[1] |
MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365-367.
|
[2] |
JIANG L, HU X, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai China[J]. Science of the Total Environment, 2013, 458/460(3): 267-272.
|
[3] |
喻峥嵘. 东江下游某市饮用水中药品和个人护理用品分布及净化[D]. 北京: 清华大学, 2011.
|
[4] |
PEI R KIM S C, CARLSON K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12):2427-2435.
|
[5] |
安婧, 周启星. 药品及个人护理用品(PPCPs)的污染来源、环境残留及生态毒性[J]. 生态学杂志, 2009, 28(9): 1878-1890.
|
[6] |
GU C, KARTHIKEYAN K G.Interaction of tetracycline with aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(8): 2660-2667.
|
[7] |
XU X R, LIU X Y.Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78: 430-436.
|
[8] |
张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6): 822-829.
|
[9] |
张慧敏, 章明奎, 顾国平, 等. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3):69-73.
|
[10] |
卢丽英. 生物炭对土壤中四环素类抗生素的有效性和形态转化的影响[D]. 南京: 南京农业大学, 2015.
|
[11] |
WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1(5): 1-9.
|
[12] |
吴蒨蒨. 生物质炭增强土壤吸附阿特拉津作用及机理[D]. 杭州: 浙江大学, 2016.
|
[13] |
俞花美. 生物质炭对环境中阿特拉津的吸附解吸作用及机理研究[D]. 北京: 中国矿业大学, 2014.
|
[14] |
王慧. 柚皮生物炭对土壤吸附五氯酚和磷的影响研究[D]. 青岛: 中国海洋大学, 2014.
|
[15] |
OLESZCZUK P, HALE S E, LEHMANN J, et al.Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge[J]. Bioresource Technology, 2012, 111: 84-91.
|
[16] |
刘思辰. 生物质炭对农村分散型污水的深度处理研究[D]. 重庆: 西南大学, 2015.
|
[17] |
MUKHERJEE S, WEIHERML, TAPPE W, et al.Sorption-desorption behavior of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems[J]. Science of the Total Environment, 2016, 559: 63-73.
|
[18] |
TAN X F, LIU Y G, GU Y L, et al.Biochar-based nano-composites for the decontamination of wastewater: a review[J]. Bioresource Technology, 2016, 212: 318-333.
|
[19] |
AHMED M B, ZHOU J L, NGO H H, et al.Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology, 2016, 214: 836-851.
|
[20] |
程扬. 药渣生物炭制备及其对四环素环境行为的影响研究[D]. 广州: 华南理工大学, 2019.
|
[21] |
梁霞, 王学江. 活性炭改性方法及其在水处理中的应用[J]. 水处理技术, 2011, 37(8): 1-6.
|
[22] |
鲍士旦, 江荣风, 杨超光, 等. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2008: 30-158.
|
[23] |
PENG H B, GAO P, CHU G, et al.Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846-853.
|
[24] |
LUO L, LOU L P, CUI X Y, et al.Sorption and desorption of pentachlorophenol to black carbon of three different origins[J]. Journal of Hazardous Materials, 2011, 185(2/3): 639-646.
|
[25] |
JANG H M, YOO S, CHOI Y K, et al.Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar[J]. Bioresource Technology, 2018, 259: 24-31.
|
[26] |
OECD. Test no. 106: Adsorption-desorption using a batch equilibrium method, OECD guidelines for the testing of chemicals, section 1[C]. Paris: OECD Publishing, 2000: 1-45.
|
[27] |
ZHOU Y Y, LIU X C, XIANG Y J, et al.Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245: 266-273.
|
[28] |
BAO Y Y, ZHOU Q X, WANG Y Y.Adsorption characteristics of tetracycline by two soils: assessing role of soil organic matter[J]. Soil Research, 2009, 47(3): 286-295.
|
[29] |
LIU N, WANG M X, LIU M M, et al. Sorption of tetracycline on organo-montmorillonites[J]. Journal of Hazardous Materials, 2012, 225/226: 25-36.
|
[30] |
薛向东, 王星源, 梅雨晨, 等. 微塑料对水中铜离子和四环素的吸附行为[J]. 环境科学, 2020, 41(8): 3675-3683.
|
[31] |
CHEN X Y, DENG D H, HU C Y, et al.Factors affecting sorption behaviors of tetracycline to soils: Importance of soil organic carbon, pH and Cd contamination[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110572.
|
[32] |
SITHOLE B B, GUY R D.Models for tetracycline in aquatic environments[J]. Water, Air, & Soil Pollution, 1987, 32(3/4): 315-321.
|
[33] |
LI Z H, SCHULZ L, ACKLEY C, et al.Adsorption of tetracycline on kaolinite with pH-dependent surface charges[J]. Journal of Colloid and Interface Science, 2010, 351(1): 254-260.
|
[34] |
KAH M, SIGMUND G, XIAO F, et al.Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials[J]. Water Research, 2017, 124: 673-692.
|
[35] |
CHEN T W, LUO L, DENG S H, et al.Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267: 431-437.
|
[36] |
HSU L C, LIU Y T, SYU C H, et al.Adsorption of tetracycline on Fe(hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios[J]. Royal Society Open Science, 2018, 5(3): 171941.
|
[37] |
SASSMAN S, LEE L.Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environmental Science & Technology, 2005, 39: 7452-7459.
|