四川农业大学学报 ›› 1995, Vol. 13 ›› Issue (02): 238-241.doi: 10.16036/j.issn.1000-2650.1995.02.026

• 研究论文 • 上一篇    下一篇

在茶学研究中正确应用统计分析方法的思考——对《茶树良种苗期生物产量与光合特性的相关研究》等文统计分析的商榷

齐桂年   

  1. 四川农业大学林学园艺学院, 雅安市 625014
  • 收稿日期:1994-10-04 出版日期:1995-06-30 发布日期:2017-04-22

CONSIDERATION ON THE CORRECT APPLICATION OF THE STATISTICAL ANALYSIS METHOD IN THA RESEARCH

Qi Guinian   

  1. College of Forestry and Horticulture Sichuan Agricultural University, Yaan, Sichuan, China 625014
  • Received:1994-10-04 Online:1995-06-30 Published:2017-04-22

摘要: 用逐步回归、通径分析及主成分方法对《茶树良种苗期生物产量与光合特性的相关研究》一文(表1)数据进行了分析。结果表明,影响茶树生物产量直接的主要因素是气孔导度(X3)和单株叶干重(X6),茶树单株苗干重(Y)的预测回归方程是Ŷ=-0.2869+26.5849X3+1.9647X6,并且指出对于多元相关变量采用简单相关分析剔除变量显然是错误的。

关键词: 茶树良种, 生物产量, 回归模型, 相关, 光合特性, 预测

Abstract: Several multivariate statistical methods(stepwise regression, path analysis and principal component analysis) have been applied to the data of "Relationship between biological yield and photosynthetic charateristics of young tea plants (table 1)". The result showed that the direct main reason of affecting tea biological yield was stoma conductivity (X2) and leaf dry weight per tea plant (X6), and that tie optimal predicative regression model of biological yield for excellent young tea plants was Ŷ=-0.2369+26.5849X3+l.9647X6, which indicates that it is an obvious mistake for relative multivariate to leave out some variate with simple relative analysis.

Key words: EXCELLENT TEA YOUNC, BIOLOOICAL YJELD, REGRESSION MODEL, CORRELATION, PHOTOSYNTHETIC CHARACTERICS, PREDICTIVE

中图分类号: 

  • O212.1