[1] |
BEYER S, DABA S, TYAGI P, et al.Loci and candidate genes controlling root traits in wheat seedlings: a wheat root GWAS[J]. Functional & Integrative Genomics, 2019, 19(1): 91-107.
|
[2] |
IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome by the international wheat genome sequencing consortium (iwgsc)[J]. Science, 2018, 361(6403):7191.
|
[3] |
ATLIN G N, CAIRNS J E, DAS B.Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change[J]. Global Food Security, 2017, 12: 31-37.
|
[4] |
DEN HERDER G, VAN ISTERDAEL G, BEECKMAN T, et al.The roots of a new green revolution[J]. Trends in Plant Science,2010, 15(11): 600-607.
|
[5] |
DE DORLODOT S, FORSTER B, PAG S L, et al.Root system architecture: opportunities and constraints for genetic improvement of crops[J]. Trends in Plant Science, 2007, 12(10): 474-481.
|
[6] |
LYNCH J P.Roots of the second green revolution[J]. Australian Journal of Botany, 2007, 55(5): 493-512.
|
[7] |
YU P, LI X, WHITE P J, et al.A large and deep root system underlies high nitrogen-use efficiency in maize production[J]. PLoS ONE, 2015, 10(5): e0126293.
|
[8] |
IANNUCCI A, MARONE D, RUSSO M A, et al.Mapping QTL for root and shoot morphological traits in a Durum wheat T. dicoccum segregating population at seedling stage[J]. International Journal of Genomics, 2017(3): 1-17.
|
[9] |
REN Y, HE Z, LI J, et al.QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird[J]. Theoretical and Applied Genetics, 2012, 125(6): 1211-1221.
|
[10] |
ATKINSON J A, WINGEN L U, GRIFFITHS M, et al.Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat[J]. Journal of Experimental Botany, 2015, 66(8): 2283-2292.
|
[11] |
WANG S, YAN X, WANG Y, et al.Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat[J]. Frontiers in plant science, 2016, 7: 783.
|
[12] |
ZHANG H, MA J, LIU J J, et al.Molecular characterization of the TaWTG1 in bread wheat (Triticum aestivum L.)[J]. Gene, 2018,678(15): 23-32.
|
[13] |
YANG C, MA J, LI T, et al.Structural organization and functional activity of the orthologous TaGLW7 genes in bread wheat (Triticum aestivum L.)[J]. Russian Journal of Genetics, 2019, 55(5): 571-579.
|
[14] |
HETZ W, HOCHHOLDINGER F, SCHWALL M, et al.Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots[J]. The Plant Journal, 1996, 10(5): 845-857.
|
[15] |
INUKAI Y, MIWA M, NAGATO Y, et al.Characterization of rice mutants deficient in the formation of crown roots[J]. Breeding Sci-ence, 2001, 51(2): 123-129.
|
[16] |
INUKAI Y, SAKAMOTO T, UEGUCHI-TANAKA M, et al.Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling[J]. The Plant Cell, 2005, 17(5): 1387-1396.
|
[17] |
LIU H, WANG S, YU X, et al.ARL1, a LOBprotein required for adventitious root formation in rice[J]. The Plant Journal, 2005, 43(1): 47-56.
|
[18] |
LIU S, WANG J, WANG L, et al.Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family[J]. Cell Research, 2009, 19(9): 1110.
|
[19] |
LIU J, LUO W, QIN N, et al.A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat[J]. Theoretical and Applied Genetics, 2018, 131(11): 2439-2450.
|
[20] |
李婷, 涂洋, 李聪, 等. 普通小麦TaGNOM1的分子鉴定和表达分析[J]. 四川农业大学学报, 2020, 38(4): 373-383.
|
[21] |
李敏. 小麦干旱胁迫应答基因TaWNK的功能分析[D]. 杨凌: 西北农林科技大学, 2018.
|
[22] |
HAWKESFORD MJ, ARAUS JL, PARK R, et al.Prospects of doubling global wheat yields[J]. Food & Energy Security, 2013, 2(1): 34-48.
|
[23] |
MASCHER M, GUNDLACH H, HIMMELBACH A, et al.A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651): 427-433.
|
[24] |
LUO M C, GU Y Q, PUIU D, et al.Genome sequence of the progenitor of the wheat D genome Aegilops tauschii[J]. Nature, 2017, 551(7681): 498.
|
[25] |
AVNI R, NAVE M, BARAD O, et al.Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science, 2017, 357(6346): 93.
|
[26] |
TAMURA K, STECHER G, PETERSON D, et al.MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
|
[27] |
HU B, JIN J, GUO A Y, et al.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8): 1296-1297.
|
[28] |
LETUNIC I, DOERKS T, BORK P.SMART: recent updates, new developments and status in 2015[J]. Nucleic Acids Research,2014, 43(1): 257-260.
|
[29] |
MAGALI L, PATRICE D, GERT T, et al.PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002, 30(1): 325-327.
|
[30] |
KHAN A, FORNES O, STIGLIANI A, et al.JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework[J]. Nucleic Acids Research, 2017,46(1): 260-266.
|
[31] |
CONTRERAS-MOREIRA B, SEBASTIAN A.FootprintDB: Analysis of plant Cis-Regulatory elements, transcription factors, and binding interfaces[M]. Plant Synthetic Promoters, 2016: 259-277.
|
[32] |
ZOU D, WU S, HAO L. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice[J]. Journal of Genetics and Genomics, 2017, 44(5): 235-241.
|
[33] |
ZADOKS J C, CHANG T T, KONZAK C F.A decimal code for the growth stages of cereals[J]. Weed Research, 1974, 14(6): 415-421.
|
[34] |
YUNYUAN X, HONG C, KANG C.APC-targeted RAA1 degradation mediates the cell cycle and root development in plants[J]. Plant Signaling & Behavior, 2010, 5(3): 218-223.
|
[35] |
GE L, CHEN H, JIANG J F, et al.Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity[J]. Plant Physiology, 2004, 135(3): 1502-1513.
|
[36] |
郭尧敏. 水稻根特异性表达基因OsRAA1的功能研究[D]. 重庆: 重庆大学, 2017.
|
[37] |
WANG J, CHONG K, XU Y.Overexpression of OsRAA1 promotes flowering and hypocotyls elongation in Arabidopsis[J]. Chinese Science Bulletin, 2009, 54(22): 4221.
|
[38] |
SAKUMA Y, MARUYAMA K, OSAKABE Y, et al.Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. The Plant Cell, 2006,18(5): 1292-1309.
|
[39] |
ITO Y, KATSURA K, MARUYAMA K, et al.Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiology, 2006, 47(1): 141-153.
|
[40] |
GIRAUDAT J.Isolation of the Arabidopsis ABI3 gene by positional cloning[J]. The Plant Cell, 1992, 4(10): 1251-1261.
|
[41] |
PARCY F, VALON C, RAYNAL M, et al.Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid[J]. The Plant Cell,1994, 6(11): 1567-1582.
|
[42] |
FINKELSTEIN R R, WANG M L, LYNCH T J, et al.The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein[J]. The Plant Cell, 1998, 10(6): 1043-1054.
|
[43] |
LYNCH FTJ.The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine Zipper transcription factor[J]. Plant Cell,2000, 12(4): 599-609.
|
[44] |
KIM S, KANG J Y, CHO D I, et al.ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J]. The Plant Journal, 2010, 40(1): 75-87.
|
[45] |
LEE S J, KANG J Y, PARK H J, et al.DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects Abscisic acid sensitivity[J]. Plant Physiology, 2010, 153(2): 716-727.
|
[46] |
YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABREABA signaling involved in drought stress tolerance and require ABA for full activation[J]. Plant Journal, 2010, 61(4): 672-685.
|
[47] |
YANAGISAWA S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize[J]. Plant Journal, 2000, 21(3): 281-288.
|
[48] |
CHEN G, LIU C, GAO Z, et al.Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress[J]. Environmental and Experimental Botany, 2018, 147: 147-156.
|