[1] FENG S J, LIU Z S, HU Y, et al.Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper[J]. Horticulture Research, 2020, 7: 158. [2] DONG Z F, ZHAO X L, LIU J J, et al.Detection and simultaneous differentiation of three co-infected viruses in Zanthoxylum armatum[J]. Plants, 2022, 11(9): 1242. [3] OKAGU I U, NDEFO J C, AHAM E C, et al.Zanthoxylum species: a comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications[J]. Molecules (Basel, Switzerland), 2021, 26(13): 4023. [4] LIU X M, HE X, LIU Z B, et al.Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development[J]. Genomics, 2022, 114(3): 110374. [5] HUI W K, WANG J Y, MA L X, et al.Identification of key genes in the biosynthesis pathways related to terpenoids, alkaloids and flavonoids in fruits of Zanthoxylum armatum[J]. Scientia Horticulturae, 2021, 290: 110523. [6] KALIA N K, SINGH B, SOOD R P.A new amide from Zanthoxylum armatum[J]. Journal of Natural Products, 1999, 62(2): 311-312. [7] FEI X T, HOU L X, SHI J W, et al.Patterns of drought response of 38 WRKY transcription factors of Zanthoxylum bungeanum maxim[J]. International Journal of Molecular Sciences, 2018, 20(1): 68. [8] ARAVIND L, ANANNTHARAMAN V, BLALJI S, et al.Themany faces of the helixturn-helix domain: Transcription regulation and beyond[J].FEMS Microbiology Reviews, 2005, 29: 231-262. [9] JAIMES-MIRANDA F, CHÁVEZ MONTES R A. The plant MBF1 protein family: a bridge between stress and transcription[J]. Journal of Experimental Botany, 2020, 71(6): 1782-1791. [10] TSUDA K, TSUJI T, HIROSE S, et al.Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators[J]. Plant & Cell Physiology, 2004, 45(2): 225-231. [11] HUANG S W, LIN Z Q, TUNG S Y, et al.A novel multiprotein bridging factor 1-like protein induces cyst wall protein gene expression and cyst differentiation in Giardia lamblia[J]. International Journal of Molecular Sciences, 2021, 22(3): 1370. [12] HUI W K, ZHENG H, FAN J T, et al.Genome-wide characterization of the MBF1 gene family and its expression pattern in different tissues and stresses in Zanthoxylum armatum[J]. BMC Genomics, 2022, 23(1): 652. [13] LI F Q, UEDA H, HIROSE S, et al.Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1[J]. Molecular and Cellular Biology, 1994, 14(5): 3013-3021. [14] GUO W L, CHEN R G, DU X H, et al.Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1[J]. BMC Plant Biology, 2014, 14(5): 138. [15] TOJO T, TSUDA K, YOSHIZUMI T, et al.Arabidopsis MBF1s control leaf cell cycle and its expansion[J]. Plant & Cell Physiology, 2009, 50(2): 254-264. [16] YU R M, SUO Y Y, YANG R, et al.StMBF1c positively regulates disease resistance to Ralstonia solanacearum via it's primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato[J]. Plant Science: an International Journal of Experimental Plant Biology, 2021, 307: 110877. [17] SUZUKI N, SEJIMA H, TAM R, et al.Identifcation of the MBF1 heat-response regulon of Arabidopsis thaliana[J]. Plant Journal: for Cell and Molecular Biology, 2011, 66(5): 844-851. [18] NOBUHIRO S, LUDMILA R, LIANG H J, et al.Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J]. Plant Physiology, 2005, 139(3): 1313-1322. [19] LI M, HOU L, LIU S S, et al.Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses[J]. Industrial Crops and Products, 2021, 173: 114093. [20] 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1): 84-87. [21] 赵作章, 陈劲松, 彭尔瑞, 等. 土壤盐渍化及治理研究进展[J]. 中国农村水利水电, 2023(6): 202-208. [22] JI X, CHENG J, GONG D H, et al.The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002[J]. Science of the Total Environment, 2018, 633: 593-599. [23] FEI X T, SHI Q Q, YANY T X, et al.Expression stabilities of ten candidate reference genes for RT-qPCR in Zanthoxylum bungeanum maxim[J]. Molecules, 2018, 23(4): 802. [24] VYAS P, KAUR R.Culturable endophytic Pseudomonas fluorescens Z1B4 isolated from Zanthoxylum alatum Roxb. with stress-tolerance and plant growth-promoting potential[J]. BioTechnologia, 2021, 102(3): 285-295. [25] 赵兰兰, 闻童, 赵兵, 等. 西南地区近50年干旱趋势及特征分析[J]. 水文, 2021, 41(6): 91-95, 59. [26] 罗蛟, 李滢, 李玉婷, 等. 六种植物生长调节剂对光温胁迫下离体黄瓜叶片光系统Ⅱ和光系统Ⅰ光抑制的影响[J]. 植物生理学报, 2021, 57(1): 178-186. [27] LUO X Y, LI C, HE X, et al.ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance[J]. Plant Cell Reports, 2020, 39(2): 181-194. [28] WANG M C, TONG S F, MA T, et al.Chromosome‐level genome assembly of Sichuan pepper provides insights into apomixis, drought tolerance, and alkaloid biosynthesis[J]. Molecular Ecology Resources, 2021, 21(7): 2533-2545. [29] ZHENG Y, JIAO C, SUN H H, et al.iTAK: a program for genome-wide prediction and\u00a0Classification of plant transcription factors, transcriptional regulators, and protein kinases[J]. Molecular Plant, 2016, 9: 1667-1670. [30] SHEN W, LE S, LI Y, et al.SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation[J]. PLoS One, 2016, 11(10): e0163962. [31] HU B, JIN J P, GUO A Y, et al.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. [32] CHEN C J, CHEN H, ZHANG Y, et al.TBtools-an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(18): 1194-1202. [33] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. [34] KIM B M, LEE H J, SONG Y H, et al.Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach[J]. Journal of the Science of Food and Agriculture, 2021, 101(9): 3787-3794. [35] 隆春艳, 古洪辉, 汪正香, 等. 外源脱落酸对高温胁迫下菠菜光合与叶绿素荧光参数的影响[J]. 四川农业大学学报, 2017, 35(1): 24-30. [36] BAKHT J, BANO A, SHAFI M, et al.Effect of abscisic acid applications on cold tolerance in chickpea (Cicer arietinum L.)[J]. European Journal of Agronomy, 2013, 44: 10-21. [37] 冯举伶, 汪军成, 姚立蓉, 等. 大麦HvMBF1c克隆及其响应盐胁迫的表达模式研究[J]. 植物遗传资源学报, 2022, 23(4): 1175-1186. [38] WU Z, LI T, ZHANG D H, et al.Lily HD-Zip I transcription factor LlHB16 promotes thermotolerance by activating LlHSFA2 and LlMBF1c[J]. Plant & Cell Physiol, 2022, 63(11):1792-1744. [39] 王达菲, 陈国平, 赖文泉, 等. 新转录辅激活子多蛋白桥梁因子MBF1的研究进展[J]. 安徽农业科学, 2009, 37(26):12425-12427. [40] ERPEN L, DEVI H S, GROSSER J W, et al.Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132(1): 1-25. [41] YANG H J, ZHOU Y, ZHANG Y N, et al.Identification of transcription factors of nitrate reductase gene promoters and NRE2 cis-element through yeast one-hybrid screening in Nicotiana tabacum[J]. BMC Plant Biology, 2019, 19(1): 145. [42] 杨巍, 唐兵, 谭国飞, 等. 芥菜全基因组中Hsf基因家族鉴定与分析[J]. 四川农业大学学报, 2023, 41(2), 295-306. [43] LI J R, CHEN X Z, ZHOU X X, et al.Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynthesis[J]. Industrial Crop and Products, 2021, 161: 113182. [44] KHAKSAR G, TREESUBSUNTORN C, THIRAVETYAN P.Effect of exogenous methyl jasmonate on airborne benzene removal by Zamioculcas zamiifolia: the role of cytochrome P450 expression, salicylic acid, IAA, ROS and antioxidant activity[J]. Environmental and Experimental Botany, 2017, 138: 130-138. [45] PANDEY SHREE P, SOMSSICH IMRE E.The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655. [46] LI W X, PANG S Y, LU Z G, et al.Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants, 2020, 9(11): 1515. [47] QIN Y, MA X, YU G H, et al.Evolutionary history of trihelix family and their functional diversification[J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2014, 21(5): 499-510. [48] BENGOA LUONI S A, CENCI A, MOSCHEN S, et al. Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus)[J]. BMC Genemics, 2021, 22(1): 893. [49] FIGUEROA N, LODEYRO A F, CARRILLO N, et al.Meta-analysis reveals key features of the improved drought tolerance of plants overexpressing NAC transcription factors[J]. Environmental and Experimental Botany, 2021, 186: 104449. [50] LU X Y, LIANG X Y, LI X, et al.Genome-wide characterisation and expression profiling of the LBD family in Salvia miltiorrhiza reveals the function of LBD50 in jasmonate signaling and phenolic biosynthesis[J]. Industrial Crop and Products, 2020, 144:112006. [51] ZHAO Y, TIAN X J, WANG F, et al.Characterization of wheat MYB genes responsive to high temperatures[J]. BMC Plant Biology, 2017, 17(1): 208. |