[1] PANCHE A N, DIWAN A D, CHANDRA S R.Flavonoids: an overview[J]. Journal of Nutritional Science, 2016, 5: e47. [2] GROTEWOLD E.The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology, 2006, 57: 761-780. [3] TAKAHASHI A, OHNISHI T.The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station[J]. Uchu Seibutsu Kagaku, 2004, 18(4): 255-260. [4] YAO L, JIANG Y, SHI J, et al.Flavonoids in food and their health benefits[J]. Plant Foods for Human Nutrition, 2004, 59(3): 113-122. [5] WESTON L A, MATHESIUS U.Flavonoids: their structure,biosynthesis and role in the rhizosphere,including allelopathy[J]. Journal of Chemical Ecology, 2013, 39(2): 283-297. [6] SI C,DONG W, TEIXEIRADASILVA J, et al.Functional analysis of flavanone 3-hydroxylase (F3H) from dendrobium officinale, which confers abiotic stress tolerance[J]. Horticultural Plant Journal, 2023, 9(2): 356-364. [7] LI X,PARK N I, KIM Y B, et al.Accumulation of flavonoids and expression of flavonoid biosynthetic genes in tartary and rice-tartary buckwheat[J]. Process Biochemistry, 2012, 47(12): 2306-2310. [8] SUNIL L, SHETTY N P.Biosynthesis and regulation of anthocyanin pathway genes[J]. Applied Microbiology and Biotechnology, 2022,106(5):1783-1798. [9] KLIMEK-CHODACKA M, OLESZKIEWICZ T, LOWDER L G, et al.Efficient CRISPR/Cas9-based genome editing in carrot cells[J]. Plant Cell Reports, 2018, 37(4): 575-586. [10] JIANG F, WANG J Y, JIA H F, et al.RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J]. Journal of Plant Growth Regulation, 2013, 32(1): 182-190. [11] YANG Y, ZHAO G, YUE W Q, et al.Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.)[J]. Tree Genetics & Genomes, 2013, 9(5): 1351-1360. [12] 段玥彤, 王鹏年, 张春宝, 等. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. [13] XU Y, WANG G B, CAO F L, et al.Light intensity affects the growth and flavonol biosynthesis of Ginkgo(Ginkgo biloba L.)[J]. New Forests, 2014, 45(6): 765-776. [14] 李程程. 南极黄丝瓜藓(Pohlia nutans)对强紫外辐射的响应及其黄烷酮3-羟化酶的功能分析[D]. 济南: 山东大学, 2018. [15] JIA H F, ZHANG C, PERVAIZ T, et al.Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea[J]. Functional & Integrative Genomics, 2016, 16(1): 79-94. [16] 吴征镒, 陈心启. 中国植物志[M]. 1卷. 北京: 科学出版社, 2004: 102. [17] 贾冬英, 姚开, 张海均. 苦荞麦的营养与功能成分研究进展[J]. 粮食与饲料工业, 2012, 12(5): 25-27. [18] 任强. 苦荞麦化学成分药理作用及体内代谢研究进展[J]. 济宁医学院学报, 2017, 40(4): 251-255. [19] ZHANG L J, LI X X,MA B, et al.The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance[J]. Molecular Plant, 2017, 10(9): 1224-1237. [20] HUANG J, DENG J, SHI T X, et al.Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum tararicum)[J]. Scientific Reports, 2017, 7: 11792. [21] GAO F, ZHOU J, DENG R Y, et al.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017, 214: 81-90. [22] LI C, ZHAO H, LI M, et al.Validation of reference genes for gene expression studies in tartary buckwheat (Fagopyrum tataricum Gaertn.) using quantitative real-time PCR[J]. PeerJ, 2019, 7: e6522. [23] 何书美, 刘敬兰. 茶叶中总黄酮含量测定方法的研究[J]. 分析化学, 2007, 35(9): 1365-1368. [24] LI X H, PARK N, XU H, et al.Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(23): 12176-12181. [25] OWENS D K, MCINTOSH C A.Biosynthesis and function of citrus glycosylated flavonoids[M]//GANG D. The Biological Activity of Phytochemicals. New York: Springer, 2011: 67-95. [26] WANG Y Y, SHI Y F, LI K Y, et al.Roles of the 2-oxoglutarate-dependent dioxygenase superfamily in the flavonoid pathway: a review of the functional diversity of F3H,FNS I, FLS, and LDOX/ANS[J]. Molecules, 2021, 26(21): 6745. [27] TU Y H, LIU F, GUO D D, et al.Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyljasmonate stimulation[J]. BMC Plant Biology, 2016, 16(1): 132. [28] LI D D, NI R, WANG P J, et al.Molecular basis for chemical evolution of flavones to flavonols and anthocyanins in land plants[J]. Plant Physiology, 2020, 184(4): 1731-1743. [29] FARROW S C, FACCHINI P.Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism[J]. Frontiers in Plant Science, 2014, 5: 524. [30] 胡晓婧, 许玉娇, 高丽萍, 等. 茶树黄烷酮3-羟化酶基因(F3H)的克隆及功能分析[J]. 农业生物技术学报, 2014, 22(3): 309-316. [31] ZHAO X Q, YUAN Z H, FENG L J, et al.Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate[J]. Journal of Plant Research, 2015, 128(4): 687-696. [32] KIM S H, LEE J, HONG S, et al.Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin[J]. Plant Science, 2003, 165(2): 403-413. [33] LAI B, HU B, QIN Y H, et al.Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics,2015, 16(1): 225. [34] ERB M, KLIEBENSTEIN D J.Plant secondary metabolites as defenses,regulators,and primary metabolites: the blurred functional trichotomy[J]. Plant Physiology, 2020, 184(1): 39-52. [35] 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订[J]. 植物遗传资源学报, 2019, 20(3): 646-653. [36] HOU S, SUN Z, LINGHU B H, et al.Regeneration of buckwheat plantlets from hypocotyl and the influence of exogenous hormones on rutin content and rutin biosynthetic gene expression in vitro[J]. Plant Cell Tissue and Organ Culture, 2015, 120(3): 1159-1167. [37] ZHANG H, LI W, WANG H, et al.Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of Litchi[J]. Frontiers in Plant Science, 2016, 7: 963. [38] HU B, LI J, WANG D, et al.Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid[J]. Plant Growth Regulation, 2018, 84: 437-450. [39] KOYAMA R, ROBERTO S R, DESOUZA R :T, et al. Abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region[J]. Frontiers in Plant Science, 2018,9: 323. [40] 马光, 郭继平, 刘志华, 等. 生物信息学手段辅助克隆、分析芜菁F3H启动子区序列[C]. Proceedings of 2011 International Conference on Biomedicine and Engineering (ISBE 2011 V3),Hong Kong: International Industrial Electronic Center, 2011: 327-330. [41] 毛玉珊. 柠条GR、F3H基因的克隆、表达分析及其启动子的分离[D]. 兰州: 西北师范大学, 2016. [42] 钟小菊, 吴晴阳, 张永康, 等. 斑地锦黄烷酮-3-羟化酶基因及启动子的克隆与分析[J]. 西北植物学报, 2021, 41(9):1475-1481. [43] LI C,BAI Y, CHEN H, et al.Cloning,characterization and functional analysis of a phenylalanine ammonia-lyase gene (FtPAL) from Fagopyrum tataricum Gaertn[J]. Plant Molecular Biology Reporter, 2012,30: 1172-1182. [44] LI C, BAI Y, LI S, et al.Cloning,characterization, and activity analysis of a flavonol synthase gene FtFLS1 and its association with flavonoid content in tartary buckwheat[J]. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5161-5168. [45] 王官凤, 吕兵兵, 王安虎, 等. 苦荞抗旱相关转录因子基因FtWRKY10的克隆及功能鉴定[J]. 农业生物技术学报, 2020, 28(4): 629-644. [46] 王霜, 雒晓鹏, 姚英俊, 等. 苦荞R2R3-MYB转录因子调控原花青素生物合成的研究[J]. 西北植物学报, 2019, 39(11): 1911-1918. [47] 孔莹莹, 蒋丽, 韩凝, 等. 植物转基因中同源共抑制的机制及其解决措施[J]. 生命科学, 2012, 24(5): 399-403. [48] YAO Y, SUN, WU W, et al.Genome-wide investigation of major enzyme-encoding genes in the flavonoid metabolic pathway in tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Molecular Evolution, 2021, 89(4/5): 1-18. |