[1] 吕思扬, 宋思意, 黎蕴洁, 等. 氮添加和凋落物增减对华西雨屏区常绿阔叶林土壤团聚体及其碳氮的影响[J]. 水土保持学报, 2022, 36(1): 277-287. [2] LU X, VITOUSEK P M, MAO Q, et al.Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20): 5187-5192. [3] 简毅, 张健, 杨万勤, 等. 岷江下游小型集水区不同林分土壤重金属污染特征及其生态风险评价[J]. 生态环境学报, 2015, 24(9): 1526-1533. [4] 林静, 张健, 杨万勤, 等. 岷江下游小型集水区3种人工林对降雨重金属含量的影响[J]. 环境科学学报, 2013, 33(10): 2871-2878. [5] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6): 1900-1908. [6] TIAN Q, LIU N, BAI W, et al.A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe[J]. Ecology, 2016, 97(1): 65-74. [7] 王婷, 沈益康, 汪鹞雄, 等. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响[J]. 陆地生态系统与保护学报, 2022, 1(2): 1-10. [8] HERRMANN L, LESUEUR D, DAVISON J, et al.Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand[J]. Mycorrhiza, 2016, 26(8): 1-15. [9] 崔莉娜, 郭弘婷, 李维扬, 等. 不同林龄杉木人工林菌根侵染特征研究[J]. 生态学报, 2019, 39(6): 1926-1934. [10] CHEN L H, ZHANG D J, YANG W Q, et al.Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution[J]. Chemosphere, 2016, 155: 196-206. [11] XU Z F, TU L H, HU T X, et al.Implications of greater than average increases in nitrogen deposition on the western edge of the Szechwan Basin, China[J]. Environmental Pollution, 2013, 177: 201-202. [12] XU Z F, CHEN L H, TANG S S, et al.Sex-specific responses to Pb stress in Populus deltoides: root architecture and Pb translocation[J]. Trees, 2016, 30(6): 2019-2027. [13] 陈良华, 胡相伟, 杨万勤, 等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J]. 环境科学学报, 2017, 37(1): 308-317. [14] 李少朋, 毕银丽, 陈昢圳, 等. 干旱胁迫下AM真菌对矿区土壤改良与玉米生长的影响[J]. 生态学报, 2013, 33(13): 4181-4188. [15] 胡家欣, 彭思利, 张栋, 等. 氮添加对不同林龄杨树人工林丛枝菌根真菌群落的影响[J]. 生态环境学报, 2020, 29(9): 1768-1775. [16] MA X, GENG Q, ZHANG H, et al.Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality[J]. New Phytologist, 2021, 229(5): 2957-2969. [17] PAN S, WANG Y, QIU Y, et al.Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi[J]. Global Change Biology, 2020, 26(11): 6568-6580. [18] BREUNINGER M, TRUJILLO C G, SERRANO E, et al.Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi[J]. Fungal Genetics & Biology, 2004, 41: 542-552. [19] TRESEDER K K, ALLEN M F.Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test[J]. New Phytologist, 2002, 155(3): 507-515. [20] LILLESKOV E A, KUYPER T W, BIDARTONDO M I, et al.Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review[J]. Environmental Pollution, 2019, 246: 148-162. [21] ATAKA M, SUN L, NAKAJI T, et al.Five-year nitrogen addition affects fine root exudation and its correlation with root respiration in a dominant species, Quercus crispula, of a cool temperate forest, Japan[J]. Tree Physiology, 2020, 40(3): 367-376. [22] XIONG D, HUANG J, YANG Z, et al.The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand[J]. Forest Ecology and Management, 2020, 458: 117793. [23] Martínez-García L B, de Dios Miranda J, Pugnaire F I. Impacts of changing rainfall patterns on mycorrhizal status of a shrub from arid environments[J]. European Journal of Soil Biology, 2012, 50: 64-67. [24] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 215-388. [25] DRIVER J D, HOLBEN W E, RILLIG M C.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(1): 101-106. [26] 汪鹞雄, 李全, 沈益康, 等. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响[J]. 生态学报, 2021, 41(1): 194-201. [27] WHITTINGHILL K A, CURRIE W S, ZAK D R, et al.Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: analysis of field observations with an ecosystem model[J]. Ecosystems, 2012, 15(3): 450-461. [28] LI R, TAN W, WANG G, et al.Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level[J]. Environmental Pollution, 2012, 255(1): 113170. [29] ZIA A, BERG L, RIAZ M, et al.Nitrogen induced DOC and heavy metals leaching: effects of nitrogen forms, deposition loads and liming[J]. Environmental Pollution, 2020, 265: 114981. [30] 蔡瑛莹, 熊德成, 李茵茵, 等. 土壤增温和氮沉降对杉木幼树细根生物量的影响[J]. 亚热带资源与环境学报, 2018, 13(1): 36-44. [31] HAO L T, CHEN L H, ZHU P, et al.Sex-specific responses of Populus deltoides to interaction of cadmium and salinity in root systems[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110437. [32] 陈冠陶, 郑军, 彭天驰, 等. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28(11): 3461-3468. [33] RIAZ M, KAMRAN M, FANG Y, et al.Arbuscular mycorrhizal fungi induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review[J]. Journal of Hazardous Materials, 2020, 15: 121976. [34] CHEN B, NAYUKI K, KUGA Y, et al.Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal Fungi as revealed by a stable isotope tracer and synchrotron radiation μX-Ray fluorescence analysis[J]. Microbes and Environments, 2018, 33(3): 257-263. [35] JIA X, ZHAO Y, HE Y, et al.Glomalin related soil protein in the rhizosphere of Robinia pseudoacacia L. seedlings under higher air temperature combined with Cd contaminated soil[J]. European Journal of Soil Science, 2018, 69(4): 634-645. [36] HE Y M, YANG R, LEI G, et al.Arbuscular mycorrhizal fungi reduce cadmium leaching from polluted soils under simulated heavy rainfall[J]. Environmental Pollution, 2020, 263: 114406. [37] LIU M, WANG Y, LIU X, et al.Intra and intersexual interactions shape microbial community dynamics in the rhizosphere of Populus cathayana females and males exposed to excess Zn[J]. Journal of Hazardous Materials, 2021, 402: 123783. |