[1] 周辉, 卢向阳, 田云, 等. 芹菜化学成分及药理活性研究进展[J]. 氨基酸和生物资源, 2006, 28(1): 6-9. [2] 刘雄, 马腾, 高建德, 等. 芹菜药用价值研究进展[J]. 甘肃中医学院学报, 2015, 32(2): 74-77. [3] 邵天恒, 孙曙光, 许海峰, 等. 芹菜中转录因子基因 AgDREB1 的分离与表达研究[J]. 南京农业大学学报, 2014, 37(6): 19-27. [4] LUO D, CARPENTER R, VINCENT C, et al.Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603): 794-799. [5] DOEBLEY J, STEC A, HUBBARD L.The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624): 485-488. [6] KOSUGI S, OHASHI Y.PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. Plant Cell, 1997, 9(9): 1607-1619. [7] CUBAS P, LAUTER N, DOEBLEY J, et al.The TCP domain: a motif found in proteins regulating plant growth and development[J]. Plant Journal, 1999, 18(2): 215-222. [8] WEN H, CHEN Y, DU H, et al.Genome-wide identification and characterization of the TCP gene family in cucumber (Cucumis sativus L.) and their transcriptional responses to different treatments[J]. Genes, 2020, 11(11): 1379. [9] MARTÍN-TRILLO M, CUBAS P. TCP genes: a family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1): 31-39. [10] RESENTINI F, FELIPO-BENAVENT A, COLOMBO L, et al.TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana[J]. Molecular Plant, 2015, 8(3): 482-485. [11] BRESSO E G, CHOROSTECKI U, RODRIGUEZ R E, et al.Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J]. Plant Physiology, 2017, 176(2): 1694-1708. [12] ZHANG G, ZHAO H, ZHANG C.TCP7 functions redundantly with several Class Ⅰ TCPs and regulates endoreplication in Arabidopsis[J]. Journal of Integrative Plant Biology, 2019, 61(11): 1151-1170. [13] AGUILAR-MARTÍNEZ J A, POZA-CARRIÓN C, CUBAS P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. Plant Cell, 2007, 19(2): 458-472. [14] GAO Y, ZHANG D, LI J.TCP1 modulates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana[J]. Journal of Genetics and Genomics, 2015, 7(42): 383-392. [15] TAKEDA T, SUWA Y, SUZUKI M, et al.The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal, 2010, 33(3): 513-520. [16] PALATNIK J F, ALLEN E, WU X, et al.Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. [17] ZHOU Y, XUN Q, ZHANG D, et al.TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana[J]. iScience, 2019,15: 600-610. [18] FU M, YANG X, ZHENG J, et al.Unraveling the regulatory mechanism of color diversity in Camellia japonica petals by integrative transcriptome and metabolome analysis[J]. Frontiers in Plant Science, 2021, 12: 685136. [19] ZHOU Q, HAN Y, ZHU Y, et al.Genome-wide identification, classification and expression analysis of TCP gene family in tea plant[J]. Acta Horticulturae Sinica, 2019, 46(10): 2021-2036. [20] ZHENG L L, QU L H.Application of microRNA gene resources in the improvement of agronomic traits in rice[J]. Plant Biotechnology Journal, 2015, 13(3): 329-336. [21] HAN X, YU H, YUAN R, et al.Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity[J]. iScience, 2019, 15: 611-622. [22] CHENG Y, ZHOU Q, LI W, et al.De novo transcriptome assembly and gene expression profiling of Ipomoea pescaprae L. under heat and cold stresses[J]. Scientia Horticulturae, 2021, 289(1): 110379. [23] 安新艳, 楼盼盼, 郝娟. 植物TCP 转录因子的研究进展[J]. 安徽农业科学, 2020, 48(15): 20-23. [24] LI M Y, FENG K, HOU X L, et al.The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family[J]. Horticulture Research, 2020, 7: 9. [25] PEI Q, LI N, BAI Y, et al.Comparative analysis of the TCP gene family in celery, coriander and carrot (family Apiaceae)[J]. Vegetable Research, 2021, 1: 5. [26] FINN R D, TATE J, MISTRY J, et al.The Pfam protein families database[J]. Nucleic Acids Research, 2008, 36: 281-288. [27] TONG X, WANG Z, MA B, et al.Structure and expression analysis of the sucrose synthase gene family in apple[J]. Journal of Integrative Agriculture, 2018, 17(4): 847-856. [28] 李坤杰, 谭杉杉, 孙勃, 等. 芥菜TCP 转录因子家族全基因组鉴定及表达分析[J]. 四川农业大学学报, 2019, 37(4): 459-468. [29] BAILEY T L, BODEN M, BUSKE F A, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208. [30] REEVES P A, OLMSTEAD R G.Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution[J]. Molecular Biology & Evolution, 2003, 20(12): 1997-2009. [31] YAO X, HONG M, JIAN W, et al.Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryzea sativa[J]. Journal of Integrative Plant Biology, 2010, 49(6): 885-897. [32] FRANCIS A, DHAKA N, BAKSHI M, et al.Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum[J]. Scientific Reports, 2016, 6(1): 38488. [33] LI F, HE X, ZHANG Y, et al.Genome-wide identification and analysis of the TCP transcription factor family of Medicago truncatula[J]. Molecular Plant Breeding, 2018, 16(20): 6639-6645. [34] 韩继红, 刘金凤, 刘慧敏. 桃TCP 转录因子家族的鉴定与分析[J]. 分子植物育种, 2020,18(16): 5261-5267. [35] WELCHEN E, GONZALEZ D H.Overrepresentation of elements recognized by TCP-Domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery[J]. Plant Physiology, 2006, 141(2): 540-545. [36] ZHAO J, ZHAI Z, LI Y, et al.Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2018, 9: 1282. [37] JIU S, XU Y, WANG J, et al.Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera[J]. Frontiers in Genetics, 2019, 10: 1276. [38] FERRERO L V, GASTALDI V, ARIEL F D, et al.Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin[J]. Plant Molecular Biology, 2020, 105(1/2): 147-159. [39] MISHRA S, SAHU G, SHAW B P.Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea[J]. Physiologia Plantarum, 2021, 174(1) : 1-15. |