四川农业大学学报 ›› 2022, Vol. 40 ›› Issue (1): 1-9.doi: 10.16036/j.issn.1000-2650.202110009
• 名家综述 • 下一篇
马建1, 丁浦洋1, 王素容1, 牟杨1, 唐华苹1, 唐力为2, 兰秀锦1
收稿日期:
2021-10-15
出版日期:
2022-02-28
发布日期:
2022-03-01
作者简介:
马建,博士,教授,主要从事小麦产量性状基因的定位、分离、功能分析及其育种应用等研究,E-mail:jianma@sicau.edu.cn。
基金资助:
MA Jian1, DING Puyang1, WANG Surong1, MOU Yang1, TANG Huaping1, TANG Liwei2, LAN Xiujin1
Received:
2021-10-15
Online:
2022-02-28
Published:
2022-03-01
摘要: 【目的】认识小麦穗发育调控相关基因及调控网络,为穗部性状遗传改良和育种利用奠定基础。【方法】通过查阅国内外小麦穗发育相关文献和基因的研究动态,对小麦穗发育过程、穗部调控相关基因和穗部相关的重要QTL等方面进展进行总结与分析。【结果】小麦的穗部性状直接与产量相关,其穗部发育一直是育种家和分子生物学家研究的热点。基于水稻和玉米的研究进展,以及测序技术和分子生物技术的发展,许多研究已经证明一些基因在小麦的穗发育过程中发挥关键作用,影响穗部性状,小麦穗发育的调控途径也逐渐被发现。【结论】小麦穗发育研究与禾本科模式作物水稻相比较为缓慢,但随着测序技术和转基因技术的发展,将大大加快穗型调控基因的克隆和功能分析,小麦穗部研究正迎来春天。
中图分类号:
马建, 丁浦洋, 王素容, 牟杨, 唐华苹, 唐力为, 兰秀锦. 小麦穗发育相关基因的研究进展[J]. 四川农业大学学报, 2022, 40(1): 1-9.
MA Jian, DING Puyang, WANG Surong, MOU Yang, TANG Huaping, TANG Liwei, LAN Xiujin. Research Progress on Wheat Spike Development-Related Genes[J]. Journal of Sichuan Agricultural University, 2022, 40(1): 1-9.
[1] | 闫雪, 史雨刚, 王曙光, 等. 小麦穗部性状与产量的相关性分析[J]. 山西农业科学,2015,43(9):1073-1075. |
[2] | GIBBS H K,RUESCH A S,ACHARD F,et al.Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s[J]. Proceedings of the National Academy of Sciences,2010, 107(38): 16732. |
[3] | 王秀香, 韩彦辉, 张春兰, 等. 作物超高产育种的理论与实践[J]. 内蒙古民族大学学报, 2010, 25(5): 522-524. |
[4] | SAKUMA S, SCHNURBUSCH T.Of floral fortune:tinkering with the grain yield potential of cereal crops[J]. New Phytologist, 2019,225(5):1873-1882. |
[5] | PANDA D, SAHU N, BEHERA P K, et al.Genetic variability of panicle architecture in indigenous rice landraces of Koraput region of Eastern Ghats of India for crop improvement[J]. Physiology and Molecular Biology of Plants,2020,26(10):1961-1971. |
[6] | SANGER F, NICKLEN S, COULSON A R.DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences, 1977, 74(12): 5463-5467. |
[7] | MARGULIES M, EGHOLM M, ALTMAN W E,et al.Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437: 376-380. |
[8] | BENTLEY D R, BALASUBRAMANIAN S, SWERDLOW H P, et al.Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456: 53-59. |
[9] | EID J.Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910): 133-138. |
[10] | URBAN J M, BLISS J, LAWRENCE C E, et al.Sequencing ultra-long DNA molecules with the Oxford Nanopore MinION[J]. BioRxiv, 2015, doi:https://doi.org/10.1101/019281. |
[11] | KONG X, WANG F, GENG S, et al.The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation[J]. Plant Biotechnology Journal, 2022, 20(1): 75-88. |
[12] | GARDNER J S, HESS W M, TRIONE E J.Development of the young wheat spike: a SEM study of Chinese spring wheat[J]. American Journal of Botany, 1985, 72(4): 548-559. |
[13] | WADDINGTON S R, CARTWRIGHT P M, WALL P C.A quantitative scale of spike initial and pistil development in barley and wheat[J]. Annals of Botany, 1983, 51(1): 119-130. |
[14] | SREENIVASULU N, SCHNURBUSCH T.A genetic playground for enhancing grain number in cereals[J]. Trends in Plant Science, 2012, 17(2): 91-101. |
[15] | BANERJEE S,WIENHUES F.Comparative studies on the development of the spike in wheat,barley and rye[J]. Zeitschrift für Pflanzenzüchtg,1965,54:130-142. |
[16] | 严威凯, 赵向科, 王孔歌,等. 小麦生育期的阶段划分和小麦品种的生育类型[J]. 西北农业学报, 1993, 2(2): 50-56. |
[17] | 曹广才. 关于小麦幼穗分化时期的划分[J]. 新疆农业科学, 1987, 1: 13-15. |
[18] | SHENDURE J, JI H.Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10): 1135-1145. |
[19] | RHOADS A, AU K F.PacBio sequencing and its applications[J]. Genomics, Proteomics & Bioinformatics, 2015, 13(5): 278-289. |
[20] | 陈满霞,蒋玉蓉,於金生. 小麦春化作用研究进展[J]. 江苏农业科学,2019,47(24):6-12. |
[21] | KIM D-H, DOYLE M R, SUNG S, et al.Vernalization:winter and the timing of flowering in plants[J]. Annual Review of Cell and Developmental Biology, 2009, 25(1): 277-299. |
[22] | PRESTON J C, KELLOGG E A.Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae)[J]. Genetics, 2006, 174(1): 421-437. |
[23] | SAMACH A.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2002, 88(5471): 1613-1616. |
[24] | ANGENENT G C, FRANKEN J, BUSSCHER M, et al.A novel class of MADS box genes is involved in ovule development in petunia[J]. The Plant Cell, 1995, 7(10): 1569-1582. |
[25] | TREVASKIS B.The central role of the VERNALIZATION1 gene in the vernalization response of cereals[J]. Functional Plant Biology, 2010, 37(6): 479-487. |
[26] | LE GOUIS J, BORDES J, RAVEL C, et al.Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat[J]. Theoretical & Applied Genetics, 2012, 124(3): 597-611. |
[27] | PUGSLEY A.A genetic analysis of the spring-winter habit of growth in wheat[J]. Australian Journal of Agricultural Research, 1971, 22(1): 21-31. |
[28] | LAW C N, WORLAND A J, GIORGI B.The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat[J]. Heredity, 1976, 36(1): 49-58. |
[29] | GALIBA G, QUARRIE S A, SUTKA J, et al.RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat[J]. Theoretical and Applied Genetics, 1995, 90(7/8): 1174-1179. |
[30] | YOSHIDA T, NISHIDA H, ZHU J, et al.Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat[J]. Theoretical and Applied Genetics, 2010, 120(3): 543-552. |
[31] | FU D, SZÜCS P, YAN L, HELGUERA M, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat[J]. Molecular Genetics and Genomics, 2005, 273(1): 54-65. |
[32] | SANTRA D K, SANTRA M, ALLAN R E, et al.Genetic and molecular characterization of vernalization genes Vrn-A1,Vrn-B1,and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the U. S. A.[J]. Plant Breeding, 2010, 128(6): 576-584. |
[33] | YAN L, LOUKOIANOV A, BLECHL A, et al.The wheat VRN2 gene is a flowering repressor down-regulated by vernalization[J]. Science, 2004, 303(5664): 1640-1644. |
[34] | TRANQUILLI G, DUBCOVSKY J.Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat[J]. Journal of Heredity, 2000, 91(4): 304-306. |
[35] | YAN L, FU D, LI C, et al.The wheat and barley vernalization gene VRN3 is an orthologue of FT[J]. Proceedings of the National Academy of Sciences, 2006, 103(51): 19581-19586. |
[36] | HEMMING M N, PEACOCK W J, DENNIS E S, et al.Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley[J]. Plant Physiology, 2008, 147(1):355-366. |
[37] | LI C, DUBCOVSKY J.Wheat FT protein regulates VRN1 transcription through interactions with FDL2[J]. The Plant Journal,2008, 55(4): 543-554. |
[38] | KIPPES N, ZHU J, CHEN A, et al.Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat[J]. Molecular Genetics and Genomics, 2014, 289(1): 47-62. |
[39] | BEALES J, TURNER A, GRIFFITHS S, et al.A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2007, 115(5): 721-733. |
[40] | LAW C N, SUTKA J, WORLAND A J.A Genetic study of day-length response in wheat[J]. Heredity, 1978, 41(2): 185-191. |
[41] | KUMAR S, SHARMA V, CHAUDHARY S, et al.Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat[J]. Journal of Genetics, 2012, 91(1): 33-47. |
[42] | WORLAND A J, BÖRNER A, KORZUN V, et al. The influence of photoperiod genes on the adaptability of European winter wheats[J]. Euphytica, 1998, 100(1): 385-394. |
[43] | BODEN S A, CAVANAGH C, CULLIS B R, et al.Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat[J]. Nature Plants, 2015, 1(2): 14016. |
[44] | NISHIDA H, YOSHIDA T, KAWAKAMI K, et al.Structural variation in the 5′upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time[J]. Molecular Breeding, 2013, 31(1): 27-37. |
[45] | CANE K, EAGLES H A, LAURIE D A, et al.Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat[J]. Crop and Pasture Science, 2013, 64(2): 100-114. |
[46] | GUO Z, SONG Y, ZHOU R, et al.Discovery,evaluation and distribution of haplotypes of the wheat Ppd-D1 gene[J]. New Phytologist, 2010, 185(3): 841-851. |
[47] | DISTELFELD A, DUBCOVSKY J.Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels[J]. Molecular Genetics and Genomics, 2010, 283(3): 223-232. |
[48] | DENG W, CASAO M C, WANG P, et al.Direct links between the vernalization response and other key traits of cereal crops[J]. Nature Communications, 2015, 6(1): 5882. |
[49] | DISTELFELD A, LI C, DUBCOVSKY J.Regulation of flowering in temperate cereals[J]. Current Opinion in Plant Biology,2009, 12(2): 178-184. |
[50] | DOEBLEY J, STEC A, HUBBARD L.The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624): 485-488. |
[51] | KOSUGI S, OHASHI Y.PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell, 1997, 9(9): 1607-1619. |
[52] | DIXON L E, GREENWOOD J R, BENCIVENGA S, et al.TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum)[J]. The Plant Cell, 2018, 30(3): 563-581. |
[53] | SORMACHEVA I, GOLOVNINA K, VAVILOVA V, et al.Q gene variability in wheat species with different spike morphology[J]. Genetic Resources and Crop Evolution, 2015, 62(6): 837-852. |
[54] | AUKERMAN M J, SAKAI H.Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11): 2730-2741. |
[55] | VARKONYI-GASIC E, LOUGH R H, MOSS S M A, et al. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172[J]. Plant Molecular Biology, 2012, 78(4): 417-429. |
[56] | GREENWOOD J R, FINNEGAN E J, WATANABE N, et al.New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development[J]. Development,2017, 144(11): 1959-1965. |
[57] | WANG J, ZHOU L, SHI H, et al.A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028. |
[58] | LIU M, SHI Z, ZHANG X, et al.Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice[J]. Nature Plants, 2019, 5(4): 389-400. |
[59] | CAO J, LIU K, SONG W, et al.Pleiotropic function of the squamosa promoter-binding protein-like gene TaSPL14 in wheat plant architecture[J]. Planta, 2021, 253(2): 44. |
[60] | ZHU T, LIU Y, MA L, et al.Genome-wide identification,phylogeny and expression analysis of the SPL gene family in wheat[J]. BMC Plant Biology, 2020, 20(1): 420. |
[61] | IKEDA K, NAGASAWA N, NAGATO Y.ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice[J]. Developmental Biology, 2005, 282(2): 349-360. |
[62] | IKEDA K, ITO M, NAGASAWA N, et al.Rice ABERRANT PANICLE ORGANIZATION 1,encoding an F-box protein,regulates meristem fate[J]. The Plant Journal,2007, 1(6): 1030-1040. |
[63] | IKEDA K, YASUNO N, OIKAWA T, et al.Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem[J]. Plant Physiology, 2009, 150(2): 736-747. |
[64] | SAMACH A, KLENZ J E, KOHALMI S E, et al.The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem[J]. The Plant Journal, 1999, 20(4): 433-445. |
[65] | WILKINSON M D, HAUGHN G W.UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis[J]. The Plant Cell, 1995, 7(9): 1485-1499. |
[66] | MUQADDASI Q H, BRASSAC J, KOPPOLU R, et al.TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties[J]. Scientific Reports, 2019, 9(1): 1-12. |
[67] | VOSS-FELS K P, KEEBLE-GAGNÈRE G, HICKEY L T, et al. High-resolution mapping of rachis nodes per rachis,a critical determinant of grain yield components in wheat[J]. Theoretical and Applied Genetics, 2019, 132(9): 2707-2719. |
[68] | KUZAY S, XU Y, ZHANG J, et al.Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping[J]. Theoretical and Applied Genetics, 2019, 132(9): 2689-2705. |
[69] | KUZAY S, LIN H,LI C, et al.WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat[J]. BioRxiv, 2021, doi:https://doi.org/10.1101/2021.07.29.454276. |
[70] | KOMATSU M, CHUJO A, NAGATO Y, et al.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J]. Development, 2003, 130(16): 3841-3850. |
[71] | CHUCK G, MUSZYNSKI M, KELLOGG E, et al.The control of spikelet meristem identity by the branched silkless1 gene in maize[J]. Science, 2002, 298(5596): 1238-1241. |
[72] | DOBROVOLSKAYA O, PONT C, SIBOUT R, et al.FRIZZY PANICLE drives supernumerary spikelets in bread wheat[J]. Plant Physiology, 2014, 167(1): 189-199. |
[73] | LI Y,LI L, ZHAO M, et al.Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat[J]. Plant Biotechnology Journal, 2021, 19(6): 1141-1154. |
[74] | DU D, ZHANG D, YUAN J, et al.FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat[J]. New Phytologist, 2021, 231(2): 814-833. |
[75] | 华北农业大学农学系. Ⅴ. 小麦穗分化(Ⅱ)[J]. 植物学杂志, 1976(5): 28-29. |
[76] | SAKUMA S, POURKHEIRANDISH M, HENSEL G, et al.Divergence of expression pattern contributed to neofunctionalization of duplicated HD-Zip I transcription factor in barley[J]. New Phytologist, 2013, 197(3): 939-948. |
[77] | SAKUMA S, GOLAN G, GUO Z, et al.Unleashing floret fertility in wheat through the mutation of a homeobox gene[J]. Proceedings of the National Academy of Sciences, 2019, 116(11): 5182-5187. |
[78] | LI C,LIN H, CHEN A, et al.Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy[J]. Development, 2019, 146(14): 175398. |
[79] | LI K,DEBERNARDI J M,LI C,et al.Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development[J]. The Plant Cell, 2021, 33(12): 3621-3644. |
[80] | MA J,DING P Y, LIU J J, et al.Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat[J]. Theoretical and Applied Genetics, 2019, 132(11): 3155-3167. |
[81] | DING P Y, MO Z Q, TANG H P, et al.A major and stable QTL for wheat spikelet number per spike was validated in different genetic backgrounds[J]. Journal of Integrative Agriculture, 2021, 20: 2-13. |
[82] | DENG S, WU X, WU Y, et al.Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat[J]. Theoretical and Applied Genetics, 2011, 122(2): 281-289. |
[83] | HU J, WANG X, ZHANG G, et al.QTL mapping for yield-related traits in wheat based on four RIL populations[J]. Theoretical and Applied Genetics, 2020, 133(3): 917-933. |
[84] | YANG L, ZHAO D, MENG Z, et al.QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping[J]. Theoretical and Applied Genetics, 2020, 133(3): 857-872. |
[85] | LI T,DENG G, TANG Y, et al.Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2021, 12(227): 611106. |
[86] | LIN Y, JIANG X, HU H, et al.QTL mapping for grain number per spikelet in wheat using a high-density genetic map[J]. The Crop Journal, 2021, 9(5): 1108-1114. |
[87] | CHEN Y, SONG W, XIE X, et al.A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae Tribe as a pilot practice in the plant pangenomic era[J]. Molecular Plant, 2020, 13(12): 1694-1708. |
[1] | 张恒, 陈艳琦, 任杰莹, 杨洪坤, 樊高琼. 西南麦区小麦苗期氮高效品种筛选及指标体系构建[J]. 四川农业大学学报, 2022, 40(1): 10-18. |
[2] | 孙加威, 李浩, 阎洪, 何玉亭, 王科, 张成, 李纪堂, 杨勋, 吴继开. 耕作方式和播种量对稻茬小麦产量及形态建成的影响[J]. 四川农业大学学报, 2022, 40(1): 28-35. |
[3] | 李佩华, 赵欢, 魏淑红, 刘小红, 周丽倩, 段典佑, 彭正松. 1株秦艽内生真菌的分离鉴定及生物活性研究[J]. 四川农业大学学报, 2022, 40(1): 50-57. |
[4] | 向菲, 郭向辉, 康振亚, 冯杨, 欧阳萍, 陈德芳, 黄小丽, 耿毅. 大鲵源迟缓爱德华菌的生物学特性及其感染的病理损伤[J]. 四川农业大学学报, 2022, 40(1): 111-117. |
[5] | 陈红星, 王仁杰, 邵春瑞, 旷忠芬, 顾俊杰. 转cry1Ac基因玉米对地表节肢动物群落的影响[J]. 四川农业大学学报, 2022, 40(1): 125-129. |
[6] | 李式昭, 涂洋, 朱华忠, 吕季娟, 郑建敏, 万洪深, 罗江陶, 杨漫宇, 伍玲. 2009—2020年国家小麦区域试验长江上游组参试品系产量性状分析[J]. 四川农业大学学报, 2022, 40(1): 19-27. |
[7] | 祁鹏飞, 李庆成, 陈庆, 郭祯儒, 周才懿, 陈晨, 王琰, 孔丽, 魏育明, 郑有良. 四川小麦加工品质调查[J]. 四川农业大学学报, 2021, 39(6): 705-712. |
[8] | 孔庆博, 杨帅, 王小菊, 李佳佳, 罗思源, 丁春邦, 周莉君. 巨尾桉精油对黑麦草、小麦种子的化感作用研究[J]. 四川农业大学学报, 2021, 39(6): 713-720. |
[9] | 高美玲, 胡创然, 袁成志, 郭宇, 刘秀杰, 刘继秀, 高越. 基于GWAS的西瓜种子性状候选QTL鉴定[J]. 四川农业大学学报, 2021, 39(6): 721-728. |
[10] | 邓倩, 王羊, 邓群仙, 张慧芬, 夏惠, 林立金, 吕小平, 廖文飞. 枣和酸枣果实可溶性糖积累规律差异研究[J]. 四川农业大学学报, 2021, 39(6): 734-741. |
[11] | 梁馨文, 邢璐, 董世雄, 徐士军, 张健, 段梦琪, 张博, 商鹏. 猪HINT1基因多态性及其在肌肉组织中表达差异的分析[J]. 四川农业大学学报, 2021, 39(5): 633-638. |
[12] | 周力, 高占红, 张春梅, 马博妍, 李蒋伟, 桂林生, 侯生珍. 不同NFC/NDF饲粮对青海藏羊育成母羊肌肉抗氧化功能、肌纤维类型组成及其相关基因表达的影响[J]. 四川农业大学学报, 2021, 39(5): 639-645. |
[13] | 李庆瑾, 隋志远, 张继虎, 张志帅, 高庆华, 邢凤. 多浪羊POMC基因克隆及其在初情期不同组织中的表达研究[J]. 四川农业大学学报, 2021, 39(5): 646-651. |
[14] | 钦鹏, 樊世军, 高鹏, 李仕贵. 水稻耐高温相关基因功能及其信号通路研究进展[J]. 四川农业大学学报, 2021, 39(3): 279-285. |
[15] | 梁鑫, 宋林江, 刘驰, 何煊, 江舟, 陈浩然, 成姝婷, 王正荣. 干扰雄性小鼠睾丸Clock基因对胎鼠发育的影响及机制研究[J]. 四川农业大学学报, 2021, 39(3): 378-384. |
|