[1] SEYMOUR G B, CHAPMAN N H, CHEW B L, et al.Regulation of ripening and opportunities for control in tomato and other fruits[J]. Plant Biotechnology Journal, 2013, 11(3): 269-278. [2] CHUANLI J, GYEONG M Y, JENNIFER M S, et al.CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19486-19491. [3] COLCOMBET J, HIRT H.Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes[J]. Biochemical Journal, 2008, 413(2): 217-226. [4] OHME-TAKAGI M, SHINSHI H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182. [5] WANG R F,LAMMERS M,TIKUNOV Y, et al.The rin,nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners[J]. Plant Science, 2020, 294: 110436-110447. [6] LIU Y D, SHI Y, SU D D,et al.SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato[J]. Horticulture Research, 2021, 8(1): 3-14. [7] CAO H H, CHEN J, YUE M, et al.Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening[J]. Plant Journal, 2020, 104(6): 1568-1581. [8] JIAN W, CAO H H, YUAN S, et al.SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits[J]. Horticulture Research, 2019, 6(1): 22-36. [9] WU M B,XU X, HU X W, et al.SlMYB72 Regulates the metabolism of chlorophylls,carotenoids, and flavonoids in tomato fruit[J]. Plant Physiology, 2020, 183(3): 854-868. [10] YAN F,GAO Y S,PANG X Q,et al.BEL1-LIKE HOMEODOMAIN4 regulates chlorophyll accumulation, chloroplast development, and cell wall metabolism in tomato fruit[J]. Journal of Experimental Botany, 2020, 71(18): 5549-5561. [11] WANG W H, WANG P W, LI X J,et al.The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels[J]. Horticulture Research, 2021, 8(1): 83-97. [12] HU S S, LIU L H, LI S, et al.Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato[J]. Horticulture Research, 2020, 7(1): 1-4. [13] HU J H,ISRAELI A, ORI N, et al.The Interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato[J]. Plant Cell, 2018, 30(8): 1710-1728. [14] YUAN Y J, XU X, GONG Z H,et al.Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato[J]. Horticulture Research, 2019, 6(1): 1-16. [15] LI R,SUN S, WANG H J, et al.FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nature Communications, 2020, 11(1): 5844-5855. [16] GUO J E, HU Z L, LI F F, et al.Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato[J]. Plant Science, 2017, 265(9): 29-38. [17] GUO J E, HU Z L, YU X H,et al.A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation[J]. Plant Cell Reports, 2018, 37(1): 125-135. [18] PETERSEN J, BRINKMANN H,CERFF R.Origin,evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids[J]. Journal of Molecular Evolution, 2003, 57(1): 16-26. [19] KIM S C, GUO L, WANG X M.Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress[J]. Nature Communications, 2020, 11(1): 3439-3453. [20] LIU T F, FANG H,LIU J, et al.Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers[J]. Plant Cell & Environment, 2017, 40(12): 3043-3054. [21] LUO Y, GE C, YANG M, et al.Cytosolic/Plastid glyceraldehyde-3-phosphate dehydrogenase is a negative regulator of strawberry fruit ripening[J]. Genes, 2020, 11(5): 580-599. [22] CORPAS F J, LUCIANO F, MARTA R R,et al.Nitro-oxidative metabolism during fruit ripening[J]. Journal of Experimental Botany, 2018, 69(14): 3449-3463. [23] ZHANG Q T, ZHANG L L, GENG B, et al.Interactive effects of abscisic acid and nitric oxide on chilling resistance and active oxygen metabolism in peach fruit during cold storage[J]. Journal of the Science of Food and Agriculture, 2019, 99(7): 3367-3380. [24] JIA H F, ZHU X Q, JIN X S,ET A L.An effective method and its modifications for isolation of high-quality total RNA from fruit pulps[J]. Journal of Agricultural Science and Technology, 2008, 2(1): 58-62. [25] CHEN S Y, TANG Y M,HU Y Y,ET AL.FaTT12-1,a multidrug and toxin extrusion (MATE) member involved in proanthocyanidin transport in strawberry fruits[J]. Scientia Horticulturae, 2018, 231(1): 158-165. [26] JIA H F, CHAI Y M, LI C L,et al.Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology, 2011, 157(1): 188-199. [27] ZHU M K, CHEN G P, ZHOU S, et al.A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation[J]. Plant and Cell Physiology, 2014, 55(1): 119-135. [28] QIN G Z, ZHU Z, WANG W H, et al.A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology, 2016, 172(3): 1596-1611. [29] 安静. 樱桃番茄采后衰老过程的代谢组和转录组研究[D]. 重庆: 重庆大学, 2016. [30] KLEE H J, GIOVANNONI J J.Genetics and control of tomato fruit ripening and quality attributes[J]. Annual Review of Genetics, 2011, 45(1): 41-59. [31] FRAY R G, GRIERSON D.Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression[J]. Plant Molecular Biology, 1993, 22(4): 589-602. [32] HIRSCHBERG J.Carotenoid biosynthesis in flowering plants[J]. Current Opinion in Plant Biology, 2001, 4(3): 210-218. [33] 王倩, 郏艳红, 孙海波, 等. 不同耐贮性粉果番茄贮藏期间果实软化相关酶活性的研究[J]. 保鲜与加工, 2020, 20(1): 80-85. |