[1] |
张云霞, 宋波, 宾娟, 等. 超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J]. 环境科学, 2019, 40(5): 2453-2459.
|
[2] |
王正, 孙兆军, MOHAMED S, 等. 胺鲜酯与螯合剂GLDA联合强化柳枝稷吸收积累镉效果[J]. 环境科学, 2020, 41(12): 5589-5599.
|
[3] |
HE S Y, YANG X E, HE Z L, et al.Morphological and physiological responses of plants to cadmium toxicity: a review[J]. Pedos-phere, 2017, 27(3): 421-438.
|
[4] |
SANGSUWAN P, PRAPAGDEE B.Cadmium phytoremediation performance of two species of Chlorophytum and enhancing their potentials by cadmium-resistant bacteria[J]. Environmental Tech-nology & Innovation, 2021, 21: 101311.
|
[5] |
傅校锋, 刘杰, 龙玉梅, 等. 强化青葙修复镉污染土壤的柠檬酸施用方式优化试验研究[J]. 土壤, 2020, 52(1): 153-159.
|
[6] |
GUO D, ALI A, REN C Y, et al.EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators[J]. Ecotoxicology and Environmental Safety, 2019, 167: 396-403.
|
[7] |
LI Y P, XIE T C, ZHA Y D, et al.Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil[J]. Journal of Hazardous Materials, 2021, 405: 124257.
|
[8] |
HAN Y L, ZHANG L L, GU J G, et al.Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings[J]. International Biodeterioration & Biodegradation, 2018, 128: 15-21.
|
[9] |
郭晖, 庄静静. 外源柠檬酸对3种观赏植物吸收和转运镉的影响[J]. 安徽农业大学学报, 2021, 48(1): 121-127.
|
[10] |
WANG K, LIU Y H, SONG Z G, et al.Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils[J]. Chemosphere, 2019, 237: 124480.
|
[11] |
ZAHEER I E, ALI S, RIZWAN M, et al.Citric acid assisted phytoremediation of copper by Brassica napus L.[J]. Ecotoxicology and Environmental Safety, 2015, 120: 310-317.
|
[12] |
HAN R, DAI H P, SKUZA L.Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil[J]. Chemosphere, 2021,278: 130446.
|
[13] |
史广宇, 余志强, 施维林. 植物修复土壤重金属污染中外源物质的影响机制和应用研究进展[J]. 生态环境学报, 2021, 30(3): 655-666.
|
[14] |
赵中秋, 席梅竹, 降光宇, 等. 冬氨酸二丁二酸醚(AES)诱导黑麦草提取污染土壤重金属的效应[J]. 环境化学, 2010, 29(3): 407-411.
|
[15] |
ANNING A K, AKOTO R.Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides[J]. Ecotoxicology and Environmental Safety, 2018, 148: 97-104.
|
[16] |
夏小燕, 杨丽琴, 翟福勤, 等. 有机酸对小麦幼苗镉毒的缓解作用[J]. 农业环境科学学报, 2007, 26(3): 990-995.
|
[17] |
陈亚慧, 李君, 王明新, 等. EGTA和酒石酸对蓖麻Cd胁迫与积累的调控作用[J]. 西北植物学报, 2014, 34(5): 1025-1031.
|
[18] |
ZHANG X C, ZHANG S R, XU X X, et al.Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L[J]. Journal of Hazardous Materials, 2010, 180(1/3): 303-308.
|
[19] |
JIN H J, XU M J, CHEN H, et al.Comparative proteomic analysis of differentially expressed proteins in Amaranthus hybridus L. roots under cadmium stress[J]. Water Air Soil Pollut, 2016, 227:220.
|
[20] |
谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1):116-121.
|
[21] |
夏涓文, 徐小逊, 卢欣, 等. EGTA与有机酸联合施用对黄麻修复Cd污染土壤的影响[J]. 农业环境科学学报, 2019, 38(2): 333-341.
|
[22] |
张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881-1884.
|
[23] |
董袁媛, 孙竹, 杨洋, 等. 镉胁迫对黄麻光合作用及镉积累的影响[J]. 核农学报, 2017, 31(8): 1640-1646.
|
[24] |
马俊俊, 吴炯, 祖艳群, 等. 不同螯合剂对香石竹(Dianthus caryophyllus)修复镉污染土壤的影响[J]. 江西农业学报, 2020, 32(7): 57-64.
|
[25] |
CHEN L, YANG J Y, WANG D.Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents[J]. Journal of Cleaner Production, 2020, 263: 121491.
|
[26] |
YANG Q, YANG C, YU H, et al.The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils[J]. Chemosphere, 2021, 269: 129373.
|
[27] |
HU N, LANG T, DING D X, et al. Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata[J]. Journal of Environmental Radioactivity,2019, 199-200: 58-65.
|
[28] |
MAHMUD J A, HASANUZZAMAN M, NAHAR K, et al.Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems[J]. Ecotoxicology and Environmental Safety, 2018, 147: 990-1001.
|
[29] |
YANG L P, ZHU J, WANG P, et al.Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata[J]. Ecotoxicology and Environ-mental Safety, 2018, 160: 10-18.
|
[30] |
张玉芬, 刘景辉, 杨彦明, 等. 柠檬酸和EDTA对蓖麻生理特性和镉累积的影响[J]. 生态与农村环境学报, 2015, 31(5):760-766.
|
[31] |
OLADELE S O, OLADELE B B, AJALA R, et al.Emerging contaminants: evaluation of degradable chelators towards enhancing cadmium phytoextraction efficiency of bioenergy crop grown on polluted soil[J]. Emerging Contaminants, 2021, 7: 139-148.
|
[32] |
LI F L, QIU Y H, XU X Y, et al.EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110185.
|
[33] |
蒋萍萍, 俞果, 姚诗音, 等. 不同螯合剂强化青葙修复土壤镉污染的效应[J]. 南方农业学报, 2019, 50(11): 2443-2449.
|
[34] |
金诚, 南忠仁, 胡亚虎, 等. 螯合剂强化下新疆杨对干旱区 Pb污染农田土壤的修复[J]. 农业环境科学学报, 2012, 31(12): 2340-2344.
|
[35] |
JIANG M Y, LIU S L, LI Y F, et al.EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos[J]. Ecotoxicology and Environmental Safety,2019, 170: 502-512.
|
[36] |
沈莉萍, 宗良纲, 蒋培, 等. 螯合剂和泥炭对苎麻吸收土壤镉的影响[J]. 环境科学, 2009, 30(9): 2767-2772.
|