[1] |
文军. 新型冠状病毒肺炎疫情的爆发及共同体防控: 基于风险社会学视角的考察[J]. 武汉大学学报(哲学社会科学版), 2020, 73(3): 5-14.
|
[2] |
李谷成. 新冠肺炎疫情对武汉农产品供应链的影响及对策[J]. 华中农业大学学报(社会科学版), 2020(3): 7-13, 168-169.
|
[3] |
李秋萍, 李长健, 肖小勇. 产业链视角下农产品价格溢出效应研究: 基于三元VAR-BEKK-GARCH(1, 1)模型[J]. 财贸经济, 2014(10): 125-136.
|
[4] |
张利庠, 张喜才. 外部冲击对我国农产品价格波动的影响研究: 基于农业产业链视角[J]. 管理世界, 2011(1): 71-81.
|
[5] |
付莲莲, 邓群钊, 翁异静. 国际原油价格波动对国内农产品价格的传导作用量化分析: 基于通径分析[J]. 资源科学, 2014, 36(7): 1418-1424.
|
[6] |
陈宇峰, 薛萧繁, 徐振宇. 国际油价波动对国内农产品价格的冲击传导机制: 基于LSTAR模型[J]. 中国农村经济, 2012(9): 74-87.
|
[7] |
李靓, 穆月英, 赵亮. 国际原油价格、货币政策与农产品价格[J]. 国际金融研究, 2017(3): 87-96.
|
[8] |
王孝松, 谢申祥. 国际农产品价格如何影响了中国农产品价格[J]. 经济研究, 2012, 47(3): 141-153.
|
[9] |
肖皓, 刘姝, 杨翠红. 农产品价格上涨的供给因素分析: 基于成本传导能力的视角[J]. 农业技术经济, 2014(6): 80-91.
|
[10] |
庞贞燕, 刘磊. 期货市场能够稳定农产品价格波动吗: 基于离散小波变换和GARCH模型的实证研究[J]. 金融研究, 2013(11): 126-139.
|
[11] |
陈丹妮. 政策、 通胀压力与农产品价格[J]. 中国软科学, 2014(7): 185-192.
|
[12] |
温涛, 王小华. 货币政策对中国农产品价格波动的冲击效应研究[J]. 当代经济科学, 2014, 36(6): 20-29, 122-123.
|
[13] |
苗珊珊. 突发事件信息冲击对猪肉价格波动的影响[J]. 管理评论, 2018, 30(9): 246-255.
|
[14] |
朱信凯, 韩磊, 曾晨晨. 信息与农产品价格波动: 基于EGARCH模型的分析[J]. 管理世界, 2012(11): 57-66, 187-188.
|
[15] |
王天夫, 许弘智. 互联网时代网民职业身份如何影响其政治舆论倾向[J]. 武汉大学学报(哲学社会科学版), 2019, 72(6): 187-196.
|
[16] |
史安斌. 社交媒体时代全球传播的理想模式探究: 基于联合国“微传播”的个案分析[J]. 武汉大学学报(哲学社会科学版), 2018, 71(1): 67-76.
|
[17] |
KHATUA A, KHATUA A, CAMBRIA E.A tale of two epidemics: contextual Word2Vec for classifying twitter streams during outbreaks[J]. Information Processing & Management, 2019, 56(1): 247-257.
|
[18] |
LAZARD A J, SCHEINFELD E, BERNHARDT J M, et al.Detecting themes of public concern: a text mining analysis of the centers for disease control and prevention's ebola live twitter chat[J]. American Journal of Infection Control, 2015, 43(10): 1109-1111.
|
[19] |
GLOWACKI E M, LAZARD A J, WILCOX G B, et al.Identifying the public's concerns and the centers for disease control and prevention's reactions during a health crisis: an analysis of a Zika live Twitter chat[J]. American Journal of Infection Control, 2016, 44(12): 1709-1711.
|
[20] |
GRECO F, POLLI A.Emotional text mining: customer profiling in brand management[J]. International Journal of Information Management, 2020, 51: 101934.
|
[21] |
ASWANI R, KAR A K, ILAVARASAN P V, et al.Search engine marketing is not all gold: insights from twitter and SEOClerks[J]. International Journal of Information Management, 2018, 38(1): 107-116.
|
[22] |
SINGH P, DWIVEDI Y K, KAHLON K S, et al.Can twitter analytics predict election outcome? an insight from 2017 Punjab assembly elections[J]. Government Information Quarterly, 2020, 37(2): 101444.
|
[23] |
GROVER P, KAR A K, DWIVEDI Y K, et al.Polarization and acculturation in US election 2016 outcomes-can twitter analytics predict changes in voting preferences[J]. Technological Forecasting and Social Change, 2019, 145: 438-460.
|
[24] |
YAQUB U, CHUN S A, ATLURI V, et al.Analysis of political discourse on twitter in the context of the 2016 us presidential elections[J]. Government Information Quarterly, 2017, 34(4): 613-626.
|
[25] |
KUŠEN E, STREMBECK M. Politics, sentiments, and misinformation: an analysis of the twitter discussion on the 2016 Austrian Presidential Elections[J]. Online Social Networks and Media, 2018, 5: 37-50.
|
[26] |
OLIVEIRA N, CORTEZ P, AREAL N.The impact of microblogging data for stock market prediction: using twitter to predict returns, volatility, trading volume and survey sentiment indices[J]. Expert Systems with Applications, 2017, 73: 125-144.
|
[27] |
TETI E, DALLOCCHIO M, ANIASI A.The relationship between twitter and stock prices. Evidence from the US technology industry[J]. Technological Forecasting and Social Change, 2019, 149: 119747.
|
[28] |
DAS S, BEHERA R K, KUMAR M, et al.Real-time sentiment analysis of twitter streaming data for stock prediction[J]. Procedia Computer Science, 2018, 132: 956-964.
|
[29] |
GROß-KLUßMANN A, KÖNIG S, EBNER M. Buzzwords build momentum: global financial twitter sentiment and the aggregate stock market[J]. Expert Systems with Applications, 2019, 136: 171-186.
|
[30] |
NISAR T M, YEUNG M.Twitter as a tool for forecasting stock market movements: a short-window event study[J]. The Journal of Finance and Data Science, 2018, 4(2): 101-119.
|
[31] |
许启发, 伯仲璞, 蒋翠侠. 基于分位数Granger因果的网络情绪与股市收益关系研究[J]. 管理科学, 2017, 30(3): 147-160.
|
[32] |
程萧潇. 场景效应还是内容效应: 财经新闻、网络舆情对股市行情的实证检验[J]. 统计与信息论坛, 2019, 34(7): 69-75.
|
[33] |
部慧, 解峥, 李佳鸿, 等. 基于股评的投资者情绪对股票市场的影响[J]. 管理科学学报, 2018, 21(4): 86-101.
|
[34] |
丁肖丽. 网络讨论、情绪分化与股票市场表现[J]. 湘潭大学学报(哲学社会科学版), 2019, 43(2): 75-81.
|
[35] |
石善冲, 朱颖楠, 赵志刚, 等. 基于微信文本挖掘的投资者情绪与股票市场表现[J]. 系统工程理论与实践, 2018, 38(6): 1404-1412.
|
[36] |
BLEI D, NG A, JORDAN M.Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
|
[37] |
PANG B, LEE L.Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2: 130-135.
|
[38] |
GRANGER C.Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37: 424-438.
|
[39] |
曾华盛, 苏柳方, 谭砚文. 农产品质量安全媒体负面报道对农产品价格波动的异质性影响[J]. 农业技术经济, 2019(8): 99-114.
|
[40] |
安璐, 吴林. 融合主题与情感特征的突发事件微博舆情演化分析[J]. 图书情报工作, 2017, 61(15): 120-129.
|
[41] |
安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20): 120-130.
|
[42] |
朱增勇, 浦华, 杨春. 新冠肺炎对生猪产业影响及应对策略[J]. 农业经济问题, 2020(3): 24-30.
|
[43] |
陈菁菁, 黄洁. 疫情事件对农产品市场价格冲击的测度[J]. 统计与决策, 2019, 35(22): 109-112.
|
[44] |
LIU Y, ZHU J, SHAO X, et al.Diffusion patterns in disaster-induced internet public opinion: based on a Sina Weibo online discussion about the‘Liangshan fire’ in China[J]. Environmental Hazards, 2021, 20(2): 163-187.
|
[45] |
林燕霞, 谢湘生. 基于社会认同理论的微博群体用户画像[J]. 情报理论与实践, 2018, 41(3): 142-148.
|
[46] |
阳玉堃. 基于文本挖掘的社交网络图书馆公众形象感知研究: 以新浪微博为例[J]. 图书馆论坛, 2019, 39(3): 51-63.
|