[1] |
BAUMGARTNER S, BAUTERS M, BARTHEL M, et al.Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin[J]. Soil, 2021, 7(1):83-94.
|
[2] |
KNICKER H.Soil organic N: an under-rated player for C sequestration in soils[J]. Soil Biology and Biochemistry, 2011, 43(6):1118-1129.
|
[3] |
YILDIZ K, KARAKAYA N, KILIC S, et al.Interaction effects of the main drivers of global climate change on spatiotemporal dynamics of high altitude ecosystem behaviors: process-based modeling[J]. Environmental Monitoring and Assessment, 2020, 192(7):457-470.
|
[4] |
CHEN Y, LIU X, HOU Y, et al.Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow[J]. Plant and Soil, 2021, 458(1):93-103.
|
[5] |
AVERILL C, WARING B.Nitrogen limitation of decomposition and decay: How can it occur?[J]. Global Change Biology, 2018, 24(4):1417-1427.
|
[6] |
刘志祥, 郝庆菊, 江长胜, 等. 耕作方式对紫色水稻土颗粒态氮的影响[J]. 水土保持学报, 2011, 25(6): 112-115,177.
|
[7] |
曹舰艇, 杨红, 崔在忠, 等. 藏东南色季拉山东西坡不同海拔高度土壤养分含量分布特征[J]. 高原农业, 2019, 3(1):19-27,35.
|
[8] |
LI C, CAO Z, CHANG J, et al.Elevetional gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow[J]. Catena, 2017, 156(1):139-148.
|
[9] |
李聪, 陆梅, 任玉连, 等. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子[J]. 北京林业大学学报, 2020, 42(12):63-73.
|
[10] |
SAMJETSABAM B, SURATNA S.Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India[J]. Environmental Monitoring and Assessment, 2019, 191(6):1-18.
|
[11] |
马志良, 顾国军, 赵文强, 等. 青藏高原东缘乔灌交错带地被物和土壤碳氮储量特征[J]. 水土保持研究, 2020, 27(5):17-23.
|
[12] |
TAN W, WANG G, HUANG C, et al.Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem[J]. Science of the Total Environment, 2017, 598(1):282-288.
|
[13] |
吴梦瑶, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J]. 应用生态学报, 2021, 32(4):1241-1249.
|
[14] |
JILLING A, KANE D, WILLIAMS A, et al.Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops[J]. Geoderma, 2020, 359(1):114001-114010.
|
[15] |
MILLER G, REES R, GRIFFITHS B, et al.The sensitivity of soil organic carbon pools to land management varies depending on former tillage practices[J]. Soil Tillage Res, 2019, 189(1):236-242.
|
[16] |
SIX J, ELLIOTT E, PAUSTIAN K, et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5):1367-1377.
|
[17] |
JONES D, WILLETT V.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soll Biol Biochem, 2006, 38(5): 991-999.
|
[18] |
LUIS L, PERE R.Sequential chemical extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes[J]. Soil Biology and Biochemistry, 2013, 62(1):57-67.
|
[19] |
AVERILL C, WARING B.Nitrogen limitation of decomposition and decay: how can it occur?[J]. Glob Chang Biol, 2018, 24(1):1417-1427.
|
[20] |
JILLING A, KANE D, WILLIAMS A, et al.Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops[J]. Geoderma, 2020, 359(2):114001-114010.
|
[21] |
CAI A, XU H, DUAN Y, et al.Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands[J]. Soil and Tillage Research, 2020, 205(1):104725-104734.
|
[22] |
MUSHINSKI R, BOUTTON T, SCOTT D.Decadal-scale changes in forest soil carbon and nitrogen storage are influenced by organic matter removal during timber harvest[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(1):846-862.
|
[23] |
MIKUTTA R, TURNER S, SCHIPPERS A, et al.Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient[J]. Scientific Reports, 2019, 1(1):10294-10302.
|
[24] |
QINLI X, KAIWEN P, LIN Z, et al.Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau, southwestern China[J]. Applied Soil Ecology, 2016, 101(1):72-83.
|
[25] |
唐海龙, 王景燕, 黄帅, 等. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应[J]. 甘肃农业大学学报, 2019, 54(2):124-131.
|
[26] |
PRIETO S, LISTA M, CARBALLAS M, et al. Humic substances in a catena of estuarine soils: Distribution of organic nitrogen and carbon[J]. Science of the Total Environment, 1989, 81-82(1):363-372.
|
[27] |
GOCKE M, PUSTOVOYTOV K, KUZYAKOV Y.Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum, and Lolium perenne, estimated by 14C labeling[J]. Biogeochemistry,2011, 103(1):209-222.
|
[28] |
TURNER S, MEYER-STS, SCHIPPERS A, et al.Microbial utilization of mineral-associated nitrogen in soils[J]. Soil Biology and Biochemistry, 2017, 104(1):185-196.
|
[29] |
SIX J, BOSSUYT H, DEGRYZE S, et al.A history of research on the link between (micro) aggregates, soil biota,and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1):7-31.
|