四川农业大学学报 ›› 2021, Vol. 39 ›› Issue (3): 279-285.doi: 10.16036/j.issn.1000-2650.2021.03.002
所属专题: 水稻研究专题
钦鹏, 樊世军, 高鹏, 李仕贵
收稿日期:
2021-06-21
出版日期:
2021-06-28
发布日期:
2021-07-05
作者简介:
钦鹏,博士,教授,主要从事水稻种质资源精准鉴定与高温下高产优质基因挖掘和利用研究,E-mail:qinpeng@sicau.edu.cn。樊世军,博士研究生。#对本文贡献同等,为并列第一作者。
基金资助:
QIN Peng, FAN Shijun, GAO Peng, LI Shigui
Received:
2021-06-21
Online:
2021-06-28
Published:
2021-07-05
摘要: 【目的】综述当前已抵道水稻有高温相关基因研究进展,以期为耐商温分子机制解析和水稻育种提供理论依据。【方法】通过已有的研究成果,对永稻响史高相关基国进行系统刷述,总结了当前一些关键的高温信号通路及分子机理。【结果】水响应高温是一个极其复杂的生理过程,目前已克隆相关基国有5类,涉及6个重要的胞内信号通路,但具体调控机理仍有栋深入探析。【结论】未来的研究应触续克隆一些关键的高温相关基因,明碗水稻感知和传递高温信号的分子机制,挖掘优异等性基用于水稻生产实际。
中图分类号:
钦鹏, 樊世军, 高鹏, 李仕贵. 水稻耐高温相关基因功能及其信号通路研究进展[J]. 四川农业大学学报, 2021, 39(3): 279-285.
QIN Peng, FAN Shijun, GAO Peng, LI Shigui. Gene Function and Signal Pathway Review of Rice High Temperature Resistance[J]. Journal of Sichuan Agricultural University, 2021, 39(3): 279-285.
[1] | FITTER A H, FITTER R S.Rapid changes in flowering time in British plants[J]. Science, 2002, 296( 5573): 1689-1691. |
[2] | ZHAO C, LIU B, PIAO S L, et al.Temperature increase reduces global yields of major crops in four independent estimates[J]. Pro-ceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[3] | 林俊城,田小海,松井勤,等.水稻花期高温胁迫研究进展与展望[J].应用生态学报, 2008, 18(11): 2632-2636. |
[4] | HASANUZZAMAN M, NAHAR K, ALAM M M, et al.Physiologi-cal, biochemical,and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684. |
[5] | XU Y F, CHU C C, AOS G. The impact of high-temperature stress on rice: Challenges and solutions[ J/OL]. The Crop Journal, 2021. [2021-06-18]. https://www.sciencedirect.com/science/article/pii/S221451412100060X. DOI: 10.1016/j.cj.2021.02.011. |
[6] | KAN Y, LIN H X.Molecular regulation and genetic control of rice thermal response[J]. The Crop Journal, 2021, 9(3): 497-505. |
[7] | CHANG P L, JINN T, HUANG W K, et al.Induction of a cDNA clone from rice encoding a class-I small heat shock protein by heat stress, mechanical injury, and salicylic acid[J]. Plant Science, 2007, 172(1): 64-75. |
[8] | ZOU J, LIU A L, CHEN X B, et al.Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment[J]. Journal of Plant Physiology, 2009, 166(8): 851-861. |
[9] | MURAKAMI T, MATSUBA S, FUNATSUKI H, et al.Over-ex-pression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants[J]. Molecular Breeding, 2004,13(2): 165-175. |
[10] | LIN M Y, CHAI K, KOS, et al. A positive feedback loop between Heat shock protein101 and heat stress-associated 32-kd protein modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties[J]. Plant Physiology, 2014,164(4): 2045-2053. |
[11] | BREUSEGEM F V, DEKEYSER R, GARCIA A B, et al.Heat-in-ducible rice hsp82 and hsp70 are not always co-regulated[J]. Planta, 1994, 193(1): 57-66. |
[12] | SINGH A, SINGH U, MITTAL D, et al.Genome- wide analysis of rice ClpB/HSP100, ClpC and ClpD genes[J]. BMC Genomics, 2010,11: 95. |
[13] | 刘爱玲,邹杰,王文芳.水稻oshsfa7基因RNA干扰载体的构建及遗传转化研究[J].核农学报, 2010, 24(2): 225-230. |
[14] | WANG H T, BIAN M D, YANG Z M, et al.Preliminary functional analysis of the isoforms of OsHsfA 2a (Oryza sativa L) generated by alternative splicing[J]. Plant Molecular Biology Reporter, 2013, 31(1): 38-46. |
[15] | SINGH A, MITTALD, LAVANIA D, et al.OsHsfA 2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L. )[J]. Cell Stress and Chap- erones, 2012, 17(2): 243-254. |
[16] | CHENG Q, ZHOU Y, LIU Z, et al.An alternatively spliced heat shock transcription factor, OsHSFA 2dI, functions in the heat stress-in duced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2): 419-429. |
[17] | YOKOTANI N, ICHIKAWA T, KONDOU Y, et al.Expression of rice heat stress transcription factor OsHsfA 2e enhances tolerance to environmental stresses in transgenic A rabidopsis[J]. Planta, 2008, 227(5): 957-967. |
[18] | MITTAL D, CHAKRABARTI S,SARKAR A, et al.Heat shock factor gene family in rice: Genomic organization and transcript ex-pression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry, 2009, 47(9): 785-795. |
[19] | WANG C, ZHANG Q, SHOU H X.Identification and expression analysis of OsHsfs in rice[J]. Journal of Zhejiang University SCI-ENCE B, 2009, 10(4): 291-300. |
[20] | QINQL, LIU J G, ZHANG Z, et al. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor Os-DREBIB in Oryza Sativa L.[J]. Molecular Breeding, 2007, 9(4): 329-340. |
[21] | WU X L, SHIROTO Y, KISHITANI S, et al.Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing Os-WRKY1l under the control of HSPI0I promoter[J]. Plant Cell Re-ports, 2009, 28(1): 21-30. |
[22] | JIN X F, XIONG A S, PENG R H, et al.OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple func-tions in A rabidopsis[J]. BMB Reports, 2010, 43(1): 34-39. |
[23] | 喻旭,牛向丽,杨盛慧,等.过量表达转录因子OsbZIP60对水稻抗热和抗旱能力的研究[J].中国农业科学, 2011, 44(20): 4142-4149. |
[24] | ELKEREAMY A, BI Y M, RANATHUNGE K, et al.The rice R2R3-MYB transcription factor OsMY B55 is involved in the toler-ance to high temperature and modulates amino acid metabolism[J]. PLoS ONE, 2012, 7(12): e52030. |
[25] | FANG Y, LIAO K, DU H, et al.A stress- responsive NAC tran-scription factor SNA C3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experi-mental Botany, 2015, 66(21): 6803-6817. |
[26] | AMBAVARAM M M, BASU S, KRISHNAN A, et al.Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 2014, 5: 5302. |
[27] | LIMS D, CHOHY, PARK Y C, et al. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance[J]. Journal of Experimental Botany, 2013, 64(10): 2899-2914. |
[28] | LIU J M, ZHANG CC, WEIC C, et al.The RING finger ubiquitin e3 ligase OsHTAS enhances heat tolerance by promoting H2O2-in-duced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. |
[29] | LI X M, CHAOD Y, WU Y, et al.Natural alleles of a proteasome a 2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[30] | PARK S, MOON J, PARK Y C, et al.Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses[J]. Journal of Plant Physiology, 2014, 171(17): 1645-1653. |
[31] | WANGD, QIN B, LI X, et al.Nucleolar DEAD-Box RNA helicase TOGR 1 regulates thermotolerant growth as a Pre-rRNA chaperone in rice[J]. PLoS Genetics, 2016, 12(2): e1005844. |
[32] | CHEN K, GUO T, LI X M, et al.Translational regulation of plant response to high temperature by a Dual-Function tRNAHis guanylyl-transferase in rice[J]. Molecular Plant, 2019, 12(8): 1123-1142. |
[33] | TANG Y Y,GAO C C,GAO Y,et al.OsNSUN2-Mediated 5- Methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental Cell, 2020, 53(3): 272-286. |
[34] | YANG Y L, XUJ, HUANG L C, et al. PGL, encoding chlorophyl-lide a oxygenase 1,impacts leaf senescence and indirectly affects grain yield and quality in rice[J]. Journal of Experimental Botany,2016, 67(5): 1297-1310. |
[35] | ZHENG K L, ZHAO J, LIND Z, et al.The rice TCM5 gene en-coding a novel deg protease protein is essential for chloroplast development under high temperatures[J]. Rice, 2016, 9(1): 13. |
[36] | ZHANG B Y,WU S H, ZHANG Y E, et al.A high tempera-ture- dependent mitochondrial lipase EXTRA GLUME1 promotes Floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa L. )[J]. PLoS Genetics, 2016, 12(7): e1006125. |
[37] | CHOU TS, CHAO Y Y, KAO C H.Involvement of hydrogen perox-ide in heat shock-and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings[J]. Journal of Plant Physiology, 2012, 169(5): 478-486. |
[38] | KOHS, LEESC, KIM M K, et al.T-DNA tagged knockout muta-tion of rice OsGSKl, an orthologue of Arabidopsis BIN2, with en-hanced tolerance to various abiotic stresses[J]. Plant Molecular Bi-ology, 2007, 65(4): 453-466. |
[39] | DONG N Q, SUN Y W, GUO T, et al.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11: 2629. |
[40] | SHE K C, KUSANO H, KOIZUMI K, et al.A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
[41] | LOS F, CHENG M L, HSING Y C, et al.Rice Big Grain I promotes cell division to enhance organ development, stress tolerance and grain yield[J]. Plant Biotechnology Journal, 2020, 18(9): 1969-1983. |
[42] | DHATTB K, PAULP, SANDHU J, et al.Allelic variation in rice Fertilization Independent Endosperm 1 contributes to grain width under high night temperature stres[J]. New Phytologist, 2021, 229(1): 335-350. |
[43] | HE S, TAN L L, HU Z L,et al.Molecular characterization and functional analysis by heterologous expression in E. Coli under di-verse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L[J ]. Molecular Genetics and Genomics, 2011, 287(1): 39-54. |
[44] | HU T Z, ZENG H, HE S, et al.Molecular analysis of OsLEA4 and its contributions to improve E. Coli viability[J]. Applied Biochemistry and Biotechnology, 2012, 166(1): 222-233. |
[45] | HUANGJ, WANG M M, JIANG Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance[J]. Gene, 2008,420(2): 135-144. |
[46] | HSUKH, LIUCC, WUSJ, et al. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening[J]. Plant Molecular Biology, 2014, 86(1/2): 125-137. |
[47] | QIAO B, ZHANG Q, LIU D L, et al.A calcium-binding protein, rice annexin OsANN1,enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66( 19): 5853-5866. |
[48] | CUI Y M, LUS, LI Z, et al.Cyclic Nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice[J]. Plant Physiology, 2020, 183(4): 1794-1808. |
[49] | XUY F, ZHANGL, OUS J, et al.Natural variations of SLGI confer high-temperature tolerance in indica rice[J]. Nature Communica- tions, 2020, 11: 5441. |
[50] | SAHIC, AGARWAL M, SINGHA A, et al.Molecular characteriza-tion of a novel isoform of rice ( Oryza sativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stress responsel[J]. Plant Science, 2007, 173(2): 144-155. |
[51] | LEE B H, WON S H, LEE H S, et al.Expression of the chloro-plast-localized small heat shock protein by oxidative stress in rice[J]. Gene, 2000, 245(2): 283-290. |
[52] | CORTIO S, CHAROENSAWAN V, BRESTOVITSKY A, et al.Transcriptional regulation of the ambient temperature response by H2A. z nucleosomes and HSFI transcription factors in A rabidopsis[J]. Molecular Plant, 2017, 10( 10): 1258-1273. |
[53] | KUREPA J, WALKER J M, SMALLE J, et al.The small ubiqui-tin-like modifier (SUMO) protein modification system in A rabidopsis. Accumulation of SUM01 and -2 conjugates is increased by stress[J]. The Journal of Biological Chemistry, 2003, 278(9): 6862-6872. |
[54] | LIBJ, GAO K, REN H M, et al.Molecular mechanisms governing plant responses to high temperatures[J]. Journal of Intergrative Plant Biology, 2018, 60(9): 757-779. |
[1] | 高美玲, 胡创然, 袁成志, 郭宇, 刘秀杰, 刘继秀, 高越. 基于GWAS的西瓜种子性状候选QTL鉴定[J]. 四川农业大学学报, 2021, 39(6): 721-728. |
[2] | 邓倩, 王羊, 邓群仙, 张慧芬, 夏惠, 林立金, 吕小平, 廖文飞. 枣和酸枣果实可溶性糖积累规律差异研究[J]. 四川农业大学学报, 2021, 39(6): 734-741. |
[3] | 梁馨文, 邢璐, 董世雄, 徐士军, 张健, 段梦琪, 张博, 商鹏. 猪HINT1基因多态性及其在肌肉组织中表达差异的分析[J]. 四川农业大学学报, 2021, 39(5): 633-638. |
[4] | 周力, 高占红, 张春梅, 马博妍, 李蒋伟, 桂林生, 侯生珍. 不同NFC/NDF饲粮对青海藏羊育成母羊肌肉抗氧化功能、肌纤维类型组成及其相关基因表达的影响[J]. 四川农业大学学报, 2021, 39(5): 639-645. |
[5] | 李庆瑾, 隋志远, 张继虎, 张志帅, 高庆华, 邢凤. 多浪羊POMC基因克隆及其在初情期不同组织中的表达研究[J]. 四川农业大学学报, 2021, 39(5): 646-651. |
[6] | 唐昱婷, 汤加勇, 赵华. 鼠李糖乳杆菌对肠道屏障功能的影响机制研究进展[J]. 四川农业大学学报, 2021, 39(4): 427-432. |
[7] | 张奇, 徐娅玲, 姚莉, 王宏, 刘海涛, 蒲波, 刘红兵, 林超文. 有机无机肥配施对川中紫色土丘陵区稻田氨挥发的影响[J]. 四川农业大学学报, 2021, 39(4): 518-523. |
[8] | 蒋波, 孙加威, 何舜, 任哓波, 冯生强, 阎洪, 林金平. 2009—2019年成都市中籼迟熟水稻品种产量构成分析[J]. 四川农业大学学报, 2021, 39(3): 307-315. |
[9] | 胡雨寒, 张荣萍, 陶诗顺, 侯永康, 黄正, 张琪, 周宁宁, 阿什日轨. 川北丘陵区水稻油后直播品种适应性研究[J]. 四川农业大学学报, 2021, 39(3): 316-322. |
[10] | 梁鑫, 宋林江, 刘驰, 何煊, 江舟, 陈浩然, 成姝婷, 王正荣. 干扰雄性小鼠睾丸Clock基因对胎鼠发育的影响及机制研究[J]. 四川农业大学学报, 2021, 39(3): 378-384. |
[11] | 钦鹏, 陈薇兰, 王淏, 李仕贵. 基于33个遗传多样性水稻材料的泛基因组分析揭示“隐藏”的基因组变异[J]. 四川农业大学学报, 2021, 39(3): 275-278. |
[12] | 李丽, 赵彦丰, 吴琪琦, 黄燕. 利用R基因RRS1/RPS4探索水稻原生质体瞬时表达转化体系的研究[J]. 四川农业大学学报, 2021, 39(3): 297-306. |
[13] | 邓达行, 陈亭微, 陈雨轩, 罗玲. 磷酸改性水稻秸秆和猪粪生物质炭添加对不同土壤吸附四环素的影响[J]. 四川农业大学学报, 2021, 39(3): 331-340. |
[14] | 李燕, 王贺, 朱勇, 张凌荔, 鲁均华, 王文明. 通过抑制水稻miR168改良产量、抗性和生育期[J]. 四川农业大学学报, 2021, 39(2): 137-140. |
[15] | 张镇川, 何冰, 李甜, 靳亚忠, 耿雪青. 冠菌素对番茄防御基因表达、胼胝质沉积及细菌生长的影响[J]. 四川农业大学学报, 2021, 39(1): 27-34. |
|