[1] |
WEISCHENFELDT J, SYMMONS O, SPITZ F, et al. Phenotypic impact of genomic structural variation: insights from and for hu-man disease[J]. Nature Reviews Genetics, 2013, 14(2): 125-138.<br />
|
[2] |
LYE Z N, PURUGGANAN M D.Copy Number variation in do-mestication[J]. Trends in Plant Science, 2019, 24(4): 352-365.<br />
|
[3] |
SEDLAZECK F J, RESCHENEDER P, SMOLKA M, et al.Ac-curate detection of complex structural variations using single-molecule sequencing[J]. Nature Methods, 2018, 15(6): 461-468.<br />
|
[4] |
HO S S, URBAN A E, MILLS R E.Structural variation in the sequencing era[J] Nature Reviews Genetics, 2020, 21(3): 171-189.<br />
|
[5] |
ZHOU Y, MINIO A, MASSONNET M, et al. The population ge-netics of structural variants in grapevine domestication[J]. Nature Plants, 2019, 5(9): 965-979.<br />
|
[6] |
YANG Z E, GE X Y, YANG Z R, et al.Extensive intraspecific gene order and gene structural variations in upland cotton culti-vars[J]. Nature Communications, 2019, 10: 2989.<br />
|
[7] |
SUN S L, ZHOU Y S, CHEN J,et al.Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes[J]. Nature Genetics, 2018, 50(9): 1289-1295.<br />
|
[8] |
WANG M,TU L,YUAN D, et al.Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J]. Nature Genetics, 2019, 51(2): 224-229.<br />
|
[9] |
HUFNAGEL B, MARQUES A, SORIANO A, et al.High-quality genome sequence of white lupin provides insight into soil explo-ration and seed quality[J]. Nature Communications,2020, 11: 492.<br />
|
[10] |
YANG N, LIU J, GAO Q, et al.Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement[J]. Nature Genetics, 2019, 51(6): 1052-1059.<br />
|
[11] |
WANG W, MAULEON R, HU Z, et al.Genomic variation in 3010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7703): 43-49.<br />
|
[12] |
ZHAO Q,FENGQ, LU H, et al.Pan- genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Na-ture Genetics, 2018, 50(2): 278-284.<br />
|
[13] |
HU Z,WANG W, WU Z, et al.Novel sequences, structural variations and gene presence variations of Asian cultivated rice[J]. Scientific Data, 2018, 5: 180079.<br />
|
[14] |
FUENTES R R, CHEBOTAROV D,DUITAMA J, et al.Struc-tural variants in 3 000 rice genomes[J]. Genome Research, 2019, 29(5): 870-880.<br />
|
[15] |
SCHATZ M C, MARON L G, STEIN J C, et al.Whole genome de novo assemblies of three divergent strains of rice, Oryza sati-va, document novel gene space of aus and indica[J]. Genome Bi-ology, 2014, 15(11): 506.<br />
|
[16] |
CARDOSO C, ZHANG Y, JAMIL M, et al.Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proceedings of the National Academy of Sciences, 2014, 111(6): 2379-2384.<br />
|
[17] |
JEONG HJ, YANG J, CHO L H, et al.OsVIL1 controls flower-ing time in rice by suppressing OsLF under short days and by in-ducing Ghd7 under long days[J]. Plant Cell Reports, 2016, 35(4): 905-920.<br />
|
[18] |
NONOUE Y, HORI K, ONO N, et al.Detection of heading date QTLs in advanced-backcross populations of an elite indica rice cultivar, R64[J]. Breed Science, 2019, 69(2): 352-358.<br />
|
[19] |
YIN X,LIU X, XU B, et al.OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice[J]. Journal of Experimental Botany, 2019, 70(15): 3895-3909.<br />
|
[20] |
QU S, LIU G, ZHOU B, et al.The broad-spectrum blast resis-tance gene Pi9 encodes a nucleotide -binding site -leucine -rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3): 1901-1914.
|