[1] 郭志文, 赵文霞, 罗久富, 等. 大岗山亚热带常绿阔叶林16种木本植物功能性状的变异特征[J]. 福建师范大学学报(自然科学版), 2019, 35(1): 82-87. [2] PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, etal. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013, 61(3): 167-234. [3] WESTOBY M, FALSTER D S, MOLRS A T.Plant ecological strategies: Some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(33): 125-159. [4] ZHU S D, SONG J J, LI R H.Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant Cell Environ, 2013, 36(4): 879-891. [5] GARNIER E, CORTEZ J, BILLES G.Plant functional markers capture ecosystem properties during secondary succession[J].Ecology, 2004, 85(9): 2630-2637. [6] 王凤友. 森林凋落量研究综述[J]. 生态学进展, 1989, 6(2): 82-89. [7] 吴承祯, 洪伟姜, 姜志林, 等. 我国森林凋落物研究进展[J]. 江西农业大学学报, 2000, 2(3): 405-410. [8] GUO L B, SIMS R E H. Litter production and nutrient return in New Zealand eucalypt short rotation forests: implications for land management[J]. Agriculture, Ecosystems & Environment, 1999, 7(1): 93-100. [9] 唐仕姗, 杨万勤, 殷睿, 等. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6): 529-539. [10] 葛晓改, 曾立雄, 肖文发, 等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J]. 生态学报, 2015, 35(3): 779-787. [11] 郭培培, 江洪, 余树全, 等. 亚热带6种针叶和阔叶树种凋落叶分解比较[J]. 应用与环境生物学报, 2009, 15(5): 655-659. [12] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C ∶ N ∶ P化学计量特征[J]. 植物生态学报,2010, 34(1): 48-57. [13] 唐仕姗, 杨万勤, 王海鹏, 等.中国森林凋落叶氮、磷化学计量特征及控制因素[J]. 应用与环境生物学报, 2015, 21(2):316-322. [14] 王文君, 杨万勤, 谭波, 等. 四川盆地亚热带常绿阔叶林土壤动物对几种典型凋落物分解的影响[J]. 生态环境学报, 2013,22(9): 1488-1495. [15] ROWLAND A P, ROBERTS J D.Lignin and cellulose fractionation in decomposition studies using acid-detergent fibremethods[J]. Communications in Soil Science and Plant Analysis, 1994, 3(25): 269-277. [16] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001: 673. [17] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. [18] 任书杰, 于贵瑞, 姜春明, 等. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J]. 应用生态学报, 2012, 23(3): 581-586. [19] ÅGREN G I.Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology Evolution and Systematics, 2008(39): 153-170. [20] Yuan Z Y, Chen H Y.Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecology & Biogeography, 2010, 18(5): 532-542. [21] 舒利贤, 皮发剑, 喻理飞, 等. 黔中喀斯特地区典型次生林内凋落叶化学计量特征[J]. 河南科技大学学报:自然科学版,2017, 38(5): 60-64. [22] 窦荣鹏, 江洪, 余树全, 等. 4种亚热带树木凋落叶的分解研究[J]. 浙江林学院学报, 2010, 27(2): 163-169. [23] 李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900. [24] 曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特区原生林与次生林鲜叶和凋落叶化学计量特征[J]. 生态学报, 2016, 36(7):1907-1914. [25] SARDANS J, PENUELAS J.Tree growth changes with climate and forest type are associated with relativeallocation of nutrients, especially phosphorus to leaves and wood[J]. Global Ecology & Biogeography, 2013, 22(4): 494-507. [26] TREMBLAY F.On the issue of inter-correlation in proprioceptive ability across body areas: a comment on Han[J]. Perceptual Motor Skills, 2013, 117(2): 597-600. [27] 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C ∶ N ∶ P化学计量学特征[J]. 植物生态学报, 2011, 35(6): 587-595. [28] 蒋龙, 徐振锋, 吴福忠, 等. 亚热带3种典型常绿森林土壤和植物叶片碳氮磷化学计量特征[J]. 应用与环境生物学报,2019, 25(4): 759-767. [29] CHAPIN F S Ⅲ, KEDROWSKI R A. Seasonal changes in nitrogen and phosphorous fractions and autumn retranslocation in evergreen and deciduous Taiga tree[J]. Ecology, 1983, 64(2):376-391. [30] BOERNER R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. Journal of Applied Ecology, 1984, 21(3): 1029-1040. [31] 黄建军, 王希华. 浙江天童山32种常绿阔叶树叶片的营养及结构特征[J]. 华东师范大学学报, 2003, 1(3): 92-97. [32] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. [33] AERTS R.Nutrient resorption from senescing leaves of perennials: Are there general patterns?[J]. Journal of Ecology, 1996, 84(4): 597-608. [34] AERTS R, CHAPIN F S Ⅲ. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. ElsevierScience & Technology, 1999, 30(30): 1-67. [35] MCGRODDY M E, DAUFRESNE T, HEDIN L O, et al.Scaling of C ∶ N ∶ P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401. [36] GÜhsewell S.N ∶ P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. [37] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019. [38] 宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报, 2014, 38(3): 231-237. [39] TAYLOR B R, PARKINSON D, PARSONS P W F J, et al. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test[J]. Ecology, 1989, 70(1): 97-104. [40] 马志良, 高顺, 杨万勤, 等. 亚热带常绿阔叶林凋落叶分解过程中氮和磷在不同雨热季节的释放动态[J]. 应用与环境生物学报, 2015, 21(2): 308-315. [41] 邓仁菊, 杨万勤, 冯瑞芳, 等. 季节性冻融期间亚高山森林凋落物的质量变化[J]. 生态学报, 2010, 30(3): 830-835. |