[1] 宁秋蕊, 李守中, 姜良超, 等. 植物叶片养分再吸收特征及其影响因子[J]. 应用与环境生物学报, 2017, 23(5): 811-817. [2] VERGUTZ L, MANZONI S, PORPORATO A, et al.Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205-220. [3] WIEDER W R, CLEVELAND C C, SMITH W K, et al.Future productivity and carbon storage limited by terrestrial nutrient availability[J]. Nature Geoscience, 2015, 8(6): 441-444. [4] ESCUDERO A, ARCO J M D, SANZ I C, et al. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species[J]. Oecologia, 1992, 90(1): 80-87. [5] 吴锡磷, 叶功富, 张尚炬, 等. 不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J]. 应用与环境生物学报, 2011, 17(5): 645-650. [6] 王金辉, 梁李宏, 黄伟坚, 等. 腰果树体养分分布特征及其再吸收效率[J]. 中国土壤与肥料, 2013(4): 88-93. [7] LIANG D F, ZHANG J J, ZHANG S T.Patterns of nitrogen resorption in functional groups in a Tibetann alpine meadow[J]. Folia Geo-bot, 2015, 50(3): 1-8. [8] 李荣华, 汪思龙, 王清奎. 不同林龄马尾松针叶凋落前后养分含量及回收特征[J]. 应用生态学报, 2008, 19(7): 1443-1447. [9] 宁秋蕊, 李守中, 姜良超, 等. 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征[J]. 生态学报, 2016, 36(12): 3510-3517. [10] YUAN Z Y, LI L H, HAN X G, et al.Soil characteristics and nitrogen resorption in Stipa Krylovii native to northern China[J]. Plant and Soil, 2005, 273(1/2): 257-268. [11] 叶功富, 张立华, 林益民, 等. 福建山东短枝木麻黄小枝氮磷含量及其再吸收率季节动态[J]. 生态学报, 2009, 29(12): 6519-6526. [12] 阴黎明, 王力华, 刘波. 文冠果叶片养分含量元素的动态变化及再吸收特性[J]. 植物研究, 2009, 29(6): 685-691. [13] MILLA R, PALACIO-BLASCO S, MAESTRO-MART NEZ M, et al. Phosphorus accretion in old leaves of a Mediter ranean shrub growing at a phosphrus-rich site[J]. Plant and Soil, 2006, 280(1/2): 369-372. [14] YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecology and Biogeography, 2010, 18(1): 11-18. [15] KAZAKOU E, GARNIER E, NZVAS M L, et al.Components of nutrient residence time and the leaf economics spectrum in species form Mediterranean old-fields differing in successional sstatus[J]. Functional Ecology, 2007, 21(2): 235-245. [16] AERTS R, CORNELISSEN J H C, VAN LOGTESTIJN R S P V, et al. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland[J]. Oecologia, 2007, 151(1): 132-139. [17] 潘开文, 吴宁, 潘开忠, 等. 关于建设长江上游生态屏障的若干问题的讨论[J]. 生态学报, 2004, 24(3): 617-629. [18] 郭彩虹, 杨万琴, 吴福忠, 等. 川西亚高山森林林窗对凋落枝早期分解的影响[J]. 植物生态学报, 2018, 42(1): 28-37. [19] 罗达, 刘顺, 史作民, 等. 川西亚高山不同林龄云杉人工林土壤微生物群落结构[J]. 应用生态学报, 2017, 28(2): 519-527. [20] 鲜骏仁, 张远彬, 王开运, 等. 川西亚高山5种森林生态系统的碳格局[J]. 植物生态学报, 2009, 33(2): 283-290. [21] 刘瑞龙, 杨万琴, 吴福忠, 等. 川西亚高山/高山森林凋落物分解过程中土壤动物群落结构及其多样性动态[J]. 应用与环境生物学报, 2014, 20(3): 499-507. [22] 冯秋红, 刘兴良, 卢昌泰, 等. 不同经营模式对川西亚高山天然次生林林地水文效应的影响[J]. 生态学报, 2016, 36(7): 5432-5439. [23] 帅伟, 姚辉, 吴兵, 等. 王朗自然保护区亚高山主要森林类型的土壤养分特征[J]. 安徽农业科学, 2010, 38(36): 20671-20673. [24] 曾瑞琪, 赵家国, 刘银占, 等. 川西林线交错带岷江冷杉幼苗异龄叶形态对长期模拟增温的响应[J]. 生态学报, 2018, 38(11): 4008-4017. [25] 高君亮, 罗凤敏, 赵英铭, 等. 乌兰布和沙漠绿洲3种杨树比叶面积和叶干物质含量研究[J]. 西北林学院学报, 2016, 31(1): 15-20. [26] HEERWAARDEN L M V, TOET S, AERTS R. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions[J]. Oikos, 2010, 101(3): 664-669. [27] 刘佳庆, 孟莹莹, 包也, 等. 长白山林线植物岳桦和牛皮杜鹃养分化学计量特征及其影响因子[J]. 生态学杂志, 2013, 32(12): 3117-3124. [28] 陈微微, 寇亮, 蒋蕾, 等. 亚热带湿地松叶片多元素化学计量与养分回收对氮添加的短期响应[J]. 应用生态学报, 2017, 28(4): 1094-1102. [29] 张秋芳, 谢锦升, 陈奶寿, 等. 生态恢复对马尾松叶片化学计量及氮磷转移的影响[J]. 生态学报, 2017, 37(1): 267-276. [30] 曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报, 2015, 39(7): 682-693. [31] CHEN F S, NIKLAS K J, LIU Y, et al.Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Ph-ysiology, 2015, 35(10): 1106-1117. [32] YUAN Z Y, SHI X R, JIAO F P, et al.N and P resorption as functions of the needle age class in two conifer trees[J]. Journal of Plant Ecology, 2018, 11(5): 780-788. [33] 刘佳庆, 王晓雨, 郭焱, 等. 长白山林线主要木本植物叶片养分的季节动态及回收效率[J]. 生态学报, 2015, 35(1): 165-171. [34] YAN Z, KIM N, HAN W, et al.Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana[J]. Plant and Soil, 2015, 388(1/2): 147-155. [35] KILLINGBECK K T.Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6): 1716-1727. [36] SEE C R, YANAI R D, FISK M C, et al.Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest[J]. Ecology, 2015, 96(9): 2488-2498. [37] KOERSELMAN W.The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of applied Ecology, 1996, 33(6): 1441-1450. [38] VENTERINK H O, WASSEN M J, VERKOOST A W M, et al. Species richness-productivity patterns differ between N-, P-, k-limited wetlands[J]. Ecology, 2003, 84(8): 2191-2199. [39] STRIBLEY G H, ASHMORE M R.Quantitative changes in twig growth pattern of young woodland beech(Fagus sylvatica L.)in relation to climate and ozone pollution over 10 years[J]. Forest Ecology and Management, 2002, 157(1): 191-204. [40] 李俊慧, 彭国全, 杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报, 2017, 41(6): 650-660. [41] XIAN J R, CHEN G P, LIU Y Z, et al.Positive adaptation of Salix eriostachya to warming in the treeline ecotone, East Tibetan Pla-teau[J]. Journal of Mountain Science, 2017, 14(2): 346-355. |