[1] HIPSLEY E H.Dietary “fibre” and pregnancy toxaemia[J]. Briti-sh Medical Journal, 1953, 2(4833): 420-422. [2] BROWNLEE I A, CHATER P I, PEARSON J P, et al.Dietary fibre and weight loss: Where are we now?[J]. Food Hydrocolloids, 2017, 68: 186-191. [3] KAOUTARI A E, ARMOUGOM F, GORDON J I, et al.The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nature Reviews Microbiology, 2013, 11(7): 497-504. [4] SONNENBURG E, SONNENBURG J.Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates[J]. Cell Metabolism, 2014, 20(5): 779-786. [5] CHEN H, MAO X B, CHE L Q, et al.Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Animal Feed Science & Technology, 2014, 195(9): 101-111. [6] CONLON M A, BIRD A R.The impact of diet and lifestyle on gut microbiota and human health[J]. Nutrients, 2014, 7(1): 17. [7] 杨玉芬, 卢德勋, 许梓荣. 日粮纤维对仔猪生长性能和消化生理功能的影响[J]. 动物营养学报, 2009, 21(6): 816-821. [8] KNUDSEN K E B, HEDEMANN M S, L RKE H N. The role of carbohydrates in intestinal health of pigs[J]. Animal Feed Science & Technology, 2012, 173(1-2): 41-53. [9] 田波, 王雅鹏. 中国饲料产业发展现状与市场整合及政策建议[J]. 农业现代化研究, 2014, 35(1): 20-24. [10] MENG L H, PANG M, ZHU L Y, et al.Effects of dietary fiber sources on the digestibility of nutrients for growing pigs[J]. Chinese Journal of Animal Nutrition, 2015, 36(4): 128-135. [11] ZHAO L, ZHANG F, DING X, et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156. [12] CHEN H, MAO X, HE J, et al.Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets[J]. British Journal of Nutrition, 2013, 110(10): 1837-1848. [13] CHEN H, MAO X, CHE L, et al.Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Animal Feed Science and Technology, 2014, 195: 101-111. [14] 尹佳. 不同纤维源对猪生长性能、养分消化率和肉品质的影响[D]. 成都: 四川农业大学, 2012. [15] 甘麦邻, 马维英, 于青云, 等. 不同能量水平对育肥猪生长性能、异常行为和疾病发生的影响[J]. 现代畜牧兽医, 2015(10): 1-5. [16] 燕富永, 孔祥峰, 印遇龙, 等. 猪赖氨酸营养研究进展[J]. 饲料工业, 2007, 28(17): 16-18. [17] 张秋华. 日粮纤维水平对育肥猪生产性能、胴体品质和肠道生理影响的研究[D]. 泰安: 山东农业大学, 2013. [18] ZHANG F, WEN J, LI C, et al.The effects of dietary fiber level on nutrient digestibility in growing;pigs[J]. Journal of Animal Sc-ience & Biotechnology, 2013, 4(1): 17. [19] ZHANG W, LI D, LIU L, et al.The effects of dietary fiber level on nutrient digestibility in growing pigs[J]. Journal of Animal Sc-ience and Biotechnology, 2013, 4(4): 1-7. [20] SILVA J H V D, SILVA E L D, FILHO J J, et al. Valores energéticos e efeitos da inclusao da farinha integral da vagem de algaroba em racoes de poedeiras comerciais[J]. Revista Brasileira De Zootecnia, 2002, 31(6): 2255-2264. [21] 翁润, 杨玉芬, 卢德勋. 日粮纤维对生长猪生长性能和胴体组成的影响[J]. 基因组学与应用生物学, 2007, 26(4): 293-297. [22] SENEVIRATNE R W, YOUNG M G, BELTRANENA E, et al.The nutritional value of expeller-pressed canola meal for grower-finisher pigs[J]. Journal of Animal Science, 2010, 88(6): 2073-2083. [23] ANGUITA M, GASA J, NOFRARIAS M, et al.Effect of coarse ground corn, sugar beet pulp and wheat bran on the voluntary intake and physicochemical characteristics of digesta of growing pigs[J]. Livestock Science, 2007, 107(2): 182-191. [24] 杨公社. 面向21世纪课程教材猪生产学动物科学专业用[M]: 中国农业出版社;2002. [25] 高月琴, 王伟兰, 张亚伟, 等. 不同来源纤维在生长猪消化道内的食糜理化特性和养分消化率[J]. 南京农业大学学报, 2015, 38(3): 471-477. [26] LATTIMER J M, HAUB M D.Effects of dietary fiber and its com-ponents on metabolic health[J]. Nutrients, 2010, 2(12): 1266-1289. [27] 李铁军, 李爱云, 张晓峰, 等. 乳酸菌抗菌机理研究进展[J]. 微生物学通报, 2002, 29(5): 81-85. [28] FROST G, SLEETH M L, SAHURIARISOYLU M, et al.The short-chain fatty acid acetate reduces appetite via a central hom-eostatic mechanism[J]. Nature Communications, 2014, 5: 3611. [29] PSICHAS A, SLEETH M L, MURPHY K G, et al.The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J]. International Journal of Obesity, 2015, 39(3): 424-429. [30] KIM M H, KANG S G, PARK J H, et al.Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 1-10. |