[1] |
QUEERNESS H, BROSSARD L, VALANCOGNE A, et al.Influence of some sow characteristics on within-litter variation of piglet birth weight[J]. Animal An International Journal of Animal Bioscience, 2008, 2(12): 1842-1849.
|
[2] |
WU G Y, BAZER F W, WALLACE J M, et al.Board-invited review: intrauterine growth retardation: implications for the animal sciences[J]. Journal of Animal Science, 2006, 84(9): 2316-2337.
|
[3] |
WU G Y, BAZER F W, DATTA S, et al.Intrauterine growth retardation in livestock: implications, mechanisms and solutions[J]. Archiv Fur Tierzucht Archives of Animal Breeding, 2008, 51(1): 4-10.
|
[4] |
QUINIOU N, DAGORN J, GAUDRE D.Variation of piglets’ birth weight and consequences on subsequent performance[J]. Livestock Production Science, 2002, 78(1): 63-70.
|
[5] |
MICHIELS J, VOS M D, MISSOTTEN J, et al.Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets[J]. British Journal of Nutrition, 2013, 109(1): 65-75.
|
[6] |
赵晋. 健康足月新生儿的氧应激状态[D]. 兰州: 兰州大学, 2004.
|
[7] |
MATSUYAMA D, KAWAHARA K.Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth[J]. Basic Research in Cardiology, 2011,106(5): 815-828.
|
[8] |
YIN J, REN W, LIU G, et al.Birth oxidative stress and the development of an antioxidant system in newborn piglets[J]. Free Radical Research, 2013, 47(12): 1027-1035.
|
[9] |
WANG J J, CHEN L, LI D, et al.Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs[J]. Journal of Nutrition, 2008, 138(1): 60-66.
|
[10] |
LI W, ZHONG X, ZHANG L L, et al.Heat shock protein 70 expression is increased in the liver of neonatal intrauterine growth retardation piglets[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(8): 1096-1101.
|
[11] |
CHE L Q, XUAN Y, HU L, et al.Effect of postnatal nutrition restriction on the oxidative status of neonates with intrauterine growth restriction in a pig model[J]. Neonatology, 2014, 107(2): 93-99.
|
[12] |
WU G Y, MORRIS J S.Arginine metabolism: nitric oxide and beyond[J]. Biochemical Journal, 1998, 336(Part1): 1-17.
|
[13] |
FLYNN N, KNABE D, MALLICK B, et al.Postnatal changes of plasma amino acids in suckling pigs[J]. J Anim Sci, 2000, 78(9): 2369-2375.
|
[14] |
YIN F, YIN Y L, LI T J, et al.Developmental changes of serum amino acids in suckling piglets[J]. Journal of Food Agriculture & Environment, 2011, 9(2): 322-327.
|
[15] |
WU G Y, KNABE D A.Free and protein-bound amino acids in sow′s colostrum and milk[J]. The Journal of Nutrition, 1994, 124(3): 415-424.
|
[16] |
WU G Y, KNABE D A, KIM S W.Arginine nutrition in neonatal pigs[J]. Journal of Nutrition, 2004, 134(10): 2783S-2790S.
|
[17] |
高运苓, 吴信, 周锡红, 等. 精氨酸和精氨酸生素对断奶仔猪氧化应激的影响[J]. 农业现代化研究, 2010, 31(4): 484-487.
|
[18] |
ZHENG P, YU B, HE J, et al.Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets[J]. Br J Nutr, 2013, 109(12): 2253-2260.
|
[19] |
黄琳. 大豆异黄酮和精氨酸对缓解新生仔猪肠道氧化损伤的机制研究[D]. 广州: 华南农业大学, 2011.
|
[20] |
MORISE A, LOUVEAU I, LE H L I. Growth and development of adipose tissue and gut and related endocrine status during early growth in the pig: impact of low birth weight[J]. Animal An International Journal of Animal Bioscience, 2008, 2(1): 73-83.
|
[21] |
WANG Y X, ZHANG L L, ZHOU G L, et al.Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets[J]. British Journal of Nutrition, 2012, 108(8): 1371-1381.
|
[22] |
HE Q H, REN P P, KONG X F, et al.Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets[J]. Molecular Biosystems, 2011, 7(7): 2147-2155.
|
[23] |
HAN F, HU L, XUAN Y, et al.Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs[J]. British Journal of Nutrition, 2013, 110(10): 1819-1827.
|
[24] |
Djordjevic V B.Free radicals in cell biology[J]. International Review of Cytology-a Survey of Cell Biology, 2004, 237: 57-89.
|
[25] |
VALKO M, LEIBFRITZ D, MONCOL J, et al.Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol, 2007, 39(1): 44-84.
|
[26] |
LU M, GONG X G.Upstream reactive oxidative species (ROS) signals in exogenous oxidative stress-induced mitochondrial dysfunction[J]. Cell Biology International, 2013, 33(6): 658-664.
|
[27] |
FIGUEIRA T R, BARROS M H, CAMARGO A A, et al.Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health[J]. Antioxid Redox Signal, 2013, 18(16): 2029-2074.
|
[28] |
李博, 李伟, 张昊, 等. 宫内发育迟缓对哺乳仔猪生长性能和肝脏氧化及抗氧化指标的影响[J]. 动物营养学报, 2014, 26(9): 2822-2827.
|
[29] |
何进田. 日粮添加三丁酸甘油酯对宫内发育迟缓哺乳仔猪肝脏功能及脂代谢的影响[D]. 南京: 南京农业大学, 2016.
|
[30] |
宋毅. 低出生重仔猪肠道发育及精氨酸的营养效果研究[D]. 雅安: 四川农业大学, 2017.
|
[31] |
黄琳. 精氨酸对人工饲养新生仔猪营养调控的研究[D]. 广州: 华南农业大学, 2008.
|
[32] |
王宁, 马慧萍, 漆欣筑, 等. Nrf2-ARE信号通路在机体氧化应激损伤防护中的研究进展[J]. 解放军医药杂志, 2015, 27(12): 21-27.
|
[33] |
NGUYEN T, NIOI P, PICKETT C B.The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. Journal of Biological Chemistry, 2009, 284(20): 13291-13295.
|
[34] |
SIEGEL D, GUSTAFSON D L, DEHN D L, et al.NAD(P)H: quinone oxidoreductase 1: role as a superoxide scavenger[J]. Molecular Pharmacology, 2004, 65(5): 1238-1247.
|
[35] |
侯翔. 二氢杨梅素对仔猪急性期反应调控作用研究[D]. 南京: 南京农业大学, 2014.
|
[36] |
LI Q, LIU Y L, CHE Z Q, et al.Dietary L-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs[J]. Innate Immunity, 2012, 18(6): 804-814.
|